Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,066
result(s) for
"CONTROLLED BURNING"
Sort by:
Adapting western North American forests to climate change and wildfires
by
Huffman, David W.
,
Hessburg, Paul F.
,
Kobziar, Leda N.
in
Adaptation
,
adaptive management
,
Allocations
2021
We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.
Journal Article
Adapt to more wildfire in western North American forests as climate changes
by
Krawchuk, Meg A.
,
Mietkiewicz, Nathan
,
Morgan, Penelope
in
Biological Sciences
,
Burning
,
Climate
2017
Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland–urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are (i) recognizing that fuels reduction cannot alter regional wildfire trends; (ii) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; (iii) actively managing more wild and prescribed fires with a range of severities; and (iv) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland–urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.
Journal Article
Wildfires as an ecosystem service
by
Keeley, Jon E
,
Pausas, Juli G
in
CONCEPTS AND QUESTIONS
,
Controlled burning
,
Ecosystem services
2019
Wildfires are often perceived as destructive disturbances, but we propose that when integrating evolutionary and socioecological factors, fires in most ecosystems can be understood as natural processes that provide a variety of benefits to humankind. Wildfires generate open habitats that enable the evolution of a diversity of shade-intolerant plants and animals that have long benefited humans. There are many provisioning, regulating, and cultural services that people obtain from wildfires, and prescribed fires and wildfire management are tools for mimicking the ancestral role of wildfires in an increasingly populated world.
Journal Article
The 2019–2020 Australian forest fires are a harbinger of decreased prescribed burning effectiveness under rising extreme conditions
2022
There is an imperative for fire agencies to quantify the potential for prescribed burning to mitigate risk to life, property and environmental values while facing changing climates. The 2019–2020 Black Summer fires in eastern Australia raised questions about the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions. We performed a simulation experiment to test the effects of different rates of prescribed burning treatment on risks posed by wildfire to life, property and infrastructure. In four forested case study landscapes, we found that the risks posed by wildfire were substantially higher under the fire weather conditions of the 2019–2020 season, compared to the full range of long-term historic weather conditions. For area burnt and house loss, the 2019–2020 conditions resulted in more than a doubling of residual risk across the four landscapes, regardless of treatment rate (mean increase of 230%, range 164–360%). Fire managers must prepare for a higher level of residual risk as climate change increases the likelihood of similar or even more dangerous fire seasons.
Journal Article
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
by
Aalto, Juha
,
Soja, Amber J.
,
Tchebakova, Nadezhda M.
in
21st century
,
Agricultural land
,
Anthropogenic factors
2021
In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70_ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2:5 emissions from wildfires above 50 and 65_ N are larger than emissions from heanthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60_ N, with 56% of black carbon emissions above 65_ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.
Journal Article
Fire and climate change
by
Hurteau, Matthew D
,
Schultz, Courtney A
,
Stephens, Scott L
in
Air pollution
,
Biodiversity
,
Carbon sequestration
2020
The destructive wildfires that occurred recently in the western US starkly foreshadow the possible future of forest ecosystems and human communities in the region. With increases in the area burned by severe wildfire in seasonally dry forests expected to result from climate change, judicious, science-based fire and restoration strategies will be essential for improving the resilience of forest ecosystems. We argue that fire use treatments (including prescribed fires and managed wildfires) as well as restoration thinning strategies, rather than conflicting with existing environmental objectives, will provide numerous co-benefits, including enhanced biodiversity, increased water availability, greater long-term and more sustainable carbon storage, improved forest resilience and adaptation to climate change, and reduced air pollution. Timber production, however, may have to be better aligned with fire management goals to achieve these co-benefits. Taking immediate actions today to promote positive ecological outcomes in seasonally dry forests should be a primary focus of management, particularly in the western US.
Journal Article
Pyrosilviculture Needed for Landscape Resilience of Dry Western United States Forests
2021
A significant increase in treatment pace and scale is needed to restore dry western US forest resilience owing to increasingly frequent and severe wildfire and drought. We propose a pyrosilviculture approach to directly increase large-scale fire use and modify current thinning treatments to optimize future fire incorporation. Recommendations include leveraging wildfire’s “treatment” in areas burned at low and moderate severity with subsequent pyrosilviculture management, identifying managed wildfire zones, and facilitating and financing prescribed fire with “anchor,” “ecosystem asset,” and “revenue” focused thinning treatments. Pyrosilviculture would also expand prescribed-burn and managed-wildfire objectives to include reducing stand density, increasing forest heterogeneity, and selecting for tree species and phenotypes better adapted to changing climate and disturbance regimes. The potential benefits and limitations of this approach are discussed. Fire is inevitable in dry western US forests and pyrosilviculture focuses on proactively shifting more of that fire into managed large-scale burns needed to restore ecosystem resilience.
Journal Article
Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather
by
Brodie, Emily G.
,
Knapp, Eric E.
,
Drury, Stacy A.
in
Biomedical and Life Sciences
,
Bulk density
,
Burning
2024
Background
The capacity of forest fuel treatments to moderate the behavior and severity of subsequent wildfires depends on weather and fuel conditions at the time of burning. However, in-depth evaluations of how treatments perform are limited because encounters between wildfires and areas with extensive pre-fire data are rare. Here, we took advantage of a 1200-ha randomized and replicated experiment that burned almost entirely in a subsequent wildfire under a wide range of weather conditions. We compared the impacts of four fuel treatments on fire severity, including two thin-only, a thin-burn, a burn-only, and an untreated control. We evaluated four fire severity metrics—tree mortality, average bole char height, percent crown volume consumed (PCVC), and percent crown volume affected (PCVA)—and leveraged data from pre-fire surface and canopy fuels to better understand the mechanisms driving differences in wildfire severity among treatments and how they changed with fire weather.
Results
We found strong mitigating effects of treatments on fire behavior and tree mortality, despite 20 years having elapsed since mechanical thinning and 10 years since the second entry of prescribed fire. The thin-burn treatment resulted in the lowest fire severity across all four metrics and the untreated control the highest. All four fire severity metrics were positively associated with pre-fire canopy and surface fuel loads, with the exception that PCVC (a fire severity metric related to crown fire behavior) was not associated with surface fuel load. The fire weather conditions under which fuel treatment was most effective varied among fire severity metrics. Fuel treatment benefit was maximized at intermediate burning index values for tree mortality, intermediate to high burning index values for PCVA, and high burning index for bole char height and PCVC.
Conclusions
We conclude that reducing canopy bulk density via mechanical thinning treatments can help to limit crown fire behavior for 20 years or more. However, reducing surface fuels is necessary to limit scorching and the total crown impacts associated with tree mortality. Further, while fuel treatment effectiveness may decline under the most severe fire weather conditions for fire severity metrics associated with tree mortality, it is maximized under severe fire weather conditions for fire severity metrics associated with crown fire behavior (bole charring and torching). Our results provide strong evidence for the use of fuel treatments to mitigate fire behavior and resulting fire severity even under extreme fire weather conditions.
Journal Article
A global synthesis of fire effects on ecosystem services of forests and woodlands
by
Doerr, Stefan H
,
Martínez-Vilalta, Jordi
,
Santín, Cristina
in
Climate change
,
Controlled burning
,
Ecosystem services
2022
Fire is a primary disturbance in the world’s forested ecosystems and its impacts are projected to increase in many regions due to global climate change. Fire impacts have been studied for decades, but integrative assessments of its effects on multiple ecosystem services (ES) across scales are rare. We conducted a global analysis of persistent (>1 year) fire effects on eight ES reported over the past 30 years, evaluating qualitative and quantitative information from 207 peer-reviewed studies. Significant effects were predominantly positive for “water provision” and negative for “water quality”, “climate regulation”, and “erosion control”; for “food provision” and “soil fertility”, no overall significant effects emerged; and for “recreation” or “pollination”, data were insufficient. These effects were generally short-lived (1–2 years) and were more common after wildfires than after prescribed burns. However, available data were primarily derived from only a few countries/biomes and extended only over short time periods, highlighting the need for future research focusing on underrepresented regions and biomes, more extensive timeframes, and multiple ES.
Journal Article
Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA
2019
Extreme drought stress and associated bark beetle population growth contributed to an extensive tree mortality event in California, USA, resulting in more than 129 million trees dying between 2012 and 2016. Although drought is an important driver of this mortality event, past and ongoing fire suppression and the consequent densification of forests may have contributed. In some areas, land management agencies have worked to reduce stand density through mechanical treatments and prescribed fire to restore forests to less dense, more open conditions that are presumably more resilient to disturbance and changing climate. Here, we evaluate if stand structural conditions associated with treated (e.g., thinned and prescribed burned) forests in the Sierra Nevada of California conferred more resistance to the bark beetle epidemic and drought event of 2012–2016. We found that, compared to untreated units, treated units had lower stand densities, larger average tree diameters, and greater dominance of pines (Pinus), the historically dominant trees. For all tree species studied, mortality was substantially greater in climatically drier areas (i.e., lower elevations and latitudes). Both pine species studied (ponderosa pine [Pinus ponderosa] and sugar pine [Pinus lambertiana]) had greater mortality in areas where their diameters were larger, suggesting a size preference for their insect mortality agents. For ponderosa pine, the tree species experiencing greatest mortality, individual-tree mortality probability (for a given tree diameter) was significantly lower in treated stands. Ponderosa pine mortality was also positively related to density of medium- to large-sized conspecific trees, especially in areas with lower precipitation, suggesting that abundance of nearby host trees for insect mortality agents was an important determinant of pine mortality. Mortality of incense cedar (Calocedrus decurrens) and white fir (Abies concolor) was positively associated with basal area, suggesting sensitivity to competition during drought, but overall mortality was lower, likely because the most prevalent and effective mortality agents (the bark beetles Dendroctonus brevicomis and D. ponderosae) are associated specifically with pine species within our study region. Our findings suggest that forest thinning treatments are effective in reducing drought-related tree mortality in forests, and they underscore the important interaction between water and forest density in mediating bark beetle-caused mortality.
Journal Article