Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,484 result(s) for "Ca2 channel"
Sort by:
Shaping the calcium signature
Summary 275 I. Introduction 276 II. Ca²⁺ signalling pathways 276 III. Shaping Ca²⁺ signatures 278 IV. Ca²⁺ influx channels 278 V. Ca²⁺ influx channels as modulators of Ca²⁺ signatures 281 VI. Ca²⁺ efflux transporters 282 VII. Ca²⁺ efflux transporters as modulators of Ca²⁺ signatures 284 VIII. The shaping of noncytosolic Ca²⁺ signatures 285 IX. Future insights into the role of Ca²⁺ oscillators from modelling studies 287 X. Conclusions and perspectives 288 Acknowledgements 288 References 288 In numerous plant signal transduction pathways, Ca²⁺ is a versatile second messenger which controls the activation of many downstream actions in response to various stimuli. There is strong evidence to indicate that information encoded within these stimulus-induced Ca²⁺ oscillations can provide signalling specificity. Such Ca²⁺ signals, or 'Ca²⁺ signatures', are generated in the cytosol, and in noncytosolic locations including the nucleus and chloroplast, through the coordinated action of Ca²⁺ influx and efflux pathways. An increased understanding of the functions and regulation of these various Ca²⁺ transporters has improved our appreciation of the role these transporters play in specifically shaping the Ca²⁺ signatures. Here we review the evidence which indicates that Ca²⁺ channel, Ca²⁺-ATPase and Ca²⁺ exchanger isoforms can indeed modulate specific Ca²⁺ signatures in response to an individual signal.
The Mitochondrial Ca2+ Overload via Voltage-Gated Ca2+ Entry Contributes to an Anti-Melanoma Effect of Diallyl Trisulfide
Allium vegetables such as garlic (Allium sativum L.) are rich in organosulfur compounds that prevent human chronic diseases, including cancer. Of these, diallyl trisulfide (DATS) exhibits anticancer effects against a variety of tumors, including malignant melanoma. Although previous studies have shown that DATS increases intracellular calcium (Ca2+) in different cancer cell types, the role of Ca2+ in the anticancer effect is obscure. In the present study, we investigated the Ca2+ pathways involved in the anti-melanoma effect. We used melittin, the bee venom that can activate a store-operated Ca2+ entry (SOCE) and apoptosis, as a reference. DATS increased apoptosis in human melanoma cell lines in a Ca2+-dependent manner. It also induced mitochondrial Ca2+ (Ca2+mit) overload through intracellular and extracellular Ca2+ fluxes independently of SOCE. Strikingly, acidification augmented Ca2+mit overload, and Ca2+ channel blockers reduced the effect more significantly under acidic pH conditions. On the contrary, acidification mitigated SOCE and Ca2+mit overload caused by melittin. Finally, Ca2+ channel blockers entirely inhibited the anti-melanoma effect of DATS. Our findings suggest that DATS explicitly evokes Ca2+mit overload via a non-SOCE, thereby displaying the anti-melanoma effect.
TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy
Angiotensin (Ang) II participates in the pathogenesis of heart failure through induction of cardiac hypertrophy. Ang II‐induced hypertrophic growth of cardiomyocytes is mediated by nuclear factor of activated T cells (NFAT), a Ca 2+ ‐responsive transcriptional factor. It is believed that phospholipase C (PLC)‐mediated production of inositol‐1,4,5‐trisphosphate (IP 3 ) is responsible for Ca 2+ increase that is necessary for NFAT activation. However, we demonstrate that PLC‐mediated production of diacylglycerol (DAG) but not IP 3 is essential for Ang II‐induced NFAT activation in rat cardiac myocytes. NFAT activation and hypertrophic responses by Ang II stimulation required the enhanced frequency of Ca 2+ oscillation triggered by membrane depolarization through activation of DAG‐sensitive TRPC channels, which leads to activation of L‐type Ca 2+ channel. Patch clamp recordings from single myocytes revealed that Ang II activated DAG‐sensitive TRPC‐like currents. Among DAG‐activating TRPC channels (TRPC3, TRPC6, and TRPC7), the activities of TRPC3 and TRPC6 channels correlated with Ang II‐induced NFAT activation and hypertrophic responses. These data suggest that DAG‐induced Ca 2+ signaling pathway through TRPC3 and TRPC6 is essential for Ang II‐induced NFAT activation and cardiac hypertrophy.
Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review)
In airway smooth muscle, the intracellular basal Ca2+ concentration [b(Ca2+)i] must be tightly regulated by several mechanisms in order to maintain a proper airway patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic reticulum Ca2+-ATPase 2b, plasma membrane Ca2+-ATPase 1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ channels, including the L-type voltage dependent Ca2+ channel (L-VDCC), T-type voltage dependent Ca2+ channel (T-VDCC) and transient receptor potential canonical 3 (TRPC3), appear to be constitutively active under basal conditions via the action of different signaling pathways, and are responsible for Ca2+ influx to maintain b[Ca2+]i. The two types of voltage-dependent Ca2+ channels (L- and T-type) are modulated by phosphorylation processes mediated by mitogen-activated protein kinase kinase (MEK) and extracellular-signal-regulated kinase 1 and 2 (ERK1/2). The MEK/ERK signaling pathway can be activated by G-protein-coupled receptors through the αq subunit when the endogenous ligand (i.e., acetylcholine, histamine, leukotrienes, etc.) is present under basal conditions. It may also be stimulated when receptor tyrosine kinases are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L-VDCC on Ser496 of the β2 subunit and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, and enabling it to switch between an open and closed state. T-VDCC is also probably phosphorylated by ERK1/2, although further research is required to identify the phosphorylation sites. TRPC3 is directly activated by diacylglycerol produced by phospholipase C (PLCβ or γ). Constitutive inositol 1,4,5-trisphosphate production induces the release of Ca2+ from the sarcoplasmic reticulum through inositol triphosphate receptor 1. This ion induces Ca2+-induced Ca2+ release through the ryanodine receptor 2 (designated as Ca2+ 'sparks'). Therefore, several Ca2+ handling mechanisms are finely tuned to regulate basal intracellular Ca2+ concentrations. It is conceivable that alterations in any of these processes may render airway smooth muscle susceptible to develop hyperresponsiveness that is observed in ailments such as asthma.
K+ and Ca2+ Channels Regulate Ca2+ Signaling in Chondrocytes: An Illustrated Review
An improved understanding of fundamental physiological principles and progressive pathophysiological processes in human articular joints (e.g., shoulders, knees, elbows) requires detailed investigations of two principal cell types: synovial fibroblasts and chondrocytes. Our studies, done in the past 8–10 years, have used electrophysiological, Ca2+ imaging, single molecule monitoring, immunocytochemical, and molecular methods to investigate regulation of the resting membrane potential (ER) and intracellular Ca2+ levels in human chondrocytes maintained in 2-D culture. Insights from these published papers are as follows: (1) Chondrocyte preparations express a number of different ion channels that can regulate their ER. (2) Understanding the basis for ER requires knowledge of (a) the presence or absence of ligand (ATP/histamine) stimulation and (b) the extraordinary ionic composition and ionic strength of synovial fluid. (3) In our chondrocyte preparations, at least two types of Ca2+-activated K+ channels are expressed and can significantly hyperpolarize ER. (4) Accounting for changes in ER can provide insights into the functional roles of the ligand-dependent Ca2+ influx through store-operated Ca2+ channels. Some of the findings are illustrated in this review. Our summary diagram suggests that, in chondrocytes, the K+ and Ca2+ channels are linked in a positive feedback loop that can augment Ca2+ influx and therefore regulate lubricant and cytokine secretion and gene transcription.
Ca2+-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca2+-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF ( n = 289), EHT 45 ± 1 pF ( n = 460), atrial CM 87 ± 3 pF ( n = 196), ventricular CM 126 ± 8 pF ( n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF ( n = 207) for ML and 12 ± 1 pA/pF ( n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF ( p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF ( p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T). While (−)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (−)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (−logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (−logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.
Chamaecyparis lawsoniana and Its Active Compound Quercetin as Ca2+ Inhibitors in the Contraction of Airway Smooth Muscle
The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.
Pharmacological targeting transient receptor potential canonical channel 6 modulates biological behaviors for cervical cancer HeLa and SiHA cell
Background This study aimed to observe the effect of transient receptor potential canonical channel 6 (TRPC6) antagonist 1-(β-[3-(4-method-phenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrate (SKF-96365) and its agonist 1-oleoyl-2-acetyl-sn-glycerol (OAG) on the proliferation of cervical cancer cell lines HeLa and SiHa, deoxyribonucleic acid (DNA) synthesis, cell migration, and TRPC6 expression. Method Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of TRPC6 in HeLa and SiHa cells. The tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the 5-ethynyl -2'- deoxyuridine (EdU) fluorescence detection assay, and a scratch test were used to detect the changes of proliferation, DNA synthesis and cell migration of HeLa and SiHa cells after SKF 96,365 and OAG acted on HeLa and SiHa cells for different lengths of time. RT-qPCR was used to detect expression changes of TRPC6 SKF-96365 and OAG treated HeLa and SiHa cells. Results TRPC6 was expressed both in HeLa and SiHa cells. The MTT assay showed that after 24 h of SKF-96365 treatment, compared with the control group, the proliferation of HeLa and SiHa cells was inhibited, and there was a statistically significant difference (p < 0.05). After 24 h of OAG, compared with the control group, the proliferation of HeLa and SiHa cells had increased, and there was a statistically significant difference (p < 0.05). EdU fluorescence detection showed that SKF-96365 could inhibit the DNA synthesis of HeLa and SiHa cells, and OAG could promote the DNA synthesis of HeLa and SiHa cells (p < 0.05) in HeLa and SiHa cell lines. Conclusion The high expression of calcium channel TRPC6 in HeLa and SiHa tissues may be related to the malignant behavior of cervical cancer cell lines HeLa and SiHa. This calcium channel may be a new target for the prevention and treatment of cervical cancer.
Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O2 saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca2+ signaling and Ca2+ influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca2+ or Ca2+ influx through various Ca2+-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca2+ abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca2+ channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca2+-sensing receptors (by 30 µM NPS2143, an allosteric Ca2+-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca2+ influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca2+ entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca2+-mediated activation of Ca2+-sensing receptors and the cell–cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.
Orai1–STIM1 Regulates Increased Ca2+ Mobilization, Leading to Contractile Duchenne Muscular Dystrophy Phenotypes in Patient-Derived Induced Pluripotent Stem Cells
Ca2+ overload is one of the factors leading to Duchenne muscular dystrophy (DMD) pathogenesis. However, the molecular targets of dystrophin deficiency-dependent Ca2+ overload and the correlation between Ca2+ overload and contractile DMD phenotypes in in vitro human models remain largely elusive. In this study, we utilized DMD patient-derived induced pluripotent stem cells (iPSCs) to differentiate myotubes using doxycycline-inducible MyoD overexpression, and searched for a target molecule that mediates dystrophin deficiency-dependent Ca2+ overload using commercially available chemicals and siRNAs. We found that several store-operated Ca2+ channel (SOC) inhibitors effectively prevented Ca2+ overload and identified that STIM1–Orai1 is a molecular target of SOCs. These findings were further confirmed by demonstrating that STIM1–Orai1 inhibitors, CM4620, AnCoA4, and GSK797A, prevented Ca2+ overload in dystrophic myotubes. Finally, we evaluated CM4620, AnCoA4, and GSK7975A activities using a previously reported model recapitulating a muscle fatigue-like decline in contractile performance in DMD. All three chemicals ameliorated the decline in contractile performance, indicating that modulating STIM1–Orai1-mediated Ca2+ overload is effective in rescuing contractile phenotypes. In conclusion, SOCs are major contributors to dystrophin deficiency-dependent Ca2+ overload through STIM1–Orai1 as molecular mediators. Modulating STIM1–Orai1 activity was effective in ameliorating the decline in contractile performance in DMD.