Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
723
result(s) for
"Caffeine - toxicity"
Sort by:
Association between ADORA2A and DRD2 Polymorphisms and Caffeine-Induced Anxiety
2008
Caffeine produces mild psychostimulant and sometimes anxiogenic effects by antagonizing adenosine at A
1
and A
2A
receptors, and perhaps through interactions with other transmitter systems. Adenosine receptors are colocalized and functionally interact with dopamine receptors in the brain. Thus, functional polymorphisms in the genes for either adenosine or dopamine receptors may affect responses to caffeine. In this study, we examined associations between self-reported anxiogenic effects of caffeine and variation in the genes for A
2A
(
ADORA2A
) and DRD
2
(
DRD2
) receptors. Healthy male and female individuals (
n
=102), who consumed less than 300 mg caffeine per week, ingested capsules containing 0, 50, 150, and 450 mg caffeine under double-blind conditions in four separate experimental sessions. Subjective anxiety was measured before and at repeated times after capsules were consumed. At the 150 mg dose of caffeine, we found a significant association between caffeine-induced anxiety (Visual Analog Scales, VAS) and
ADORA2A
rs5751876 (1976C/T), rs2298383 (intron 1a) and rs4822492 (3′-flank), and
DRD2
rs1110976 (intron 6). Caffeine-induced anxiety (VAS) was also associated with two-loci interactions of selected
ADORA2A
and
DRD2
polymorphisms. The lowest dose of caffeine did not increase ratings of anxiety while the highest dose increased anxiety in the majority of subjects. These findings provide support for an association between an
ADORA2A
polymorphism and self-reported anxiety after a moderate dose of caffeine. It is likely that other
ADORA2A
and
DRD2
polymorphisms also contribute to responses to caffeine.
Journal Article
Caffeine-Related Deaths: Manner of Deaths and Categories at Risk
2018
Caffeine is the most widely consumed psychoactive compound worldwide. It is mostly found in coffee, tea, energizing drinks and in some drugs. However, it has become really easy to obtain pure caffeine (powder or tablets) on the Internet markets. Mechanisms of action are dose-dependent. Serious toxicities such as seizure and cardiac arrhythmias, seen with caffeine plasma concentrations of 15 mg/L or higher, have caused poisoning or, rarely, death; otherwise concentrations of 3–6 mg/kg are considered safe. Caffeine concentrations of 80–100 mg/L are considered lethal. The aim of this systematic review, performed following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement for the identification and selection of studies, is to review fatal cases in which caffeine has been recognized as the only cause of death in order to identify potential categories at risk. A total of 92 cases have been identified. These events happened more frequently in infants, psychiatric patients, and athletes. Although caffeine intoxication is relatively uncommon, raising awareness about its lethal consequences could be useful for both clinicians and pathologists to identify possible unrecognized cases and prevent related severe health conditions and deaths.
Journal Article
Development of a Two-Dimensional Model for Predicting Transdermal Permeation with the Follicular Pathway: Demonstration with a Caffeine Study
by
Glavin, Stephen
,
Chen, Tao
,
Kattou, Panayiotis
in
Administration, Cutaneous
,
Bioavailability
,
Biochemistry
2017
Purpose
The development of a new two-dimensional (2D) model to predict follicular permeation, with integration into a recently reported multi-scale model of transdermal permeation is presented.
Methods
The follicular pathway is modelled by diffusion in sebum. The mass transfer and partition properties of solutes in lipid, corneocytes, viable dermis, dermis and systemic circulation are calculated as reported previously [Pharm Res 33 (2016) 1602]. The mass transfer and partition properties in sebum are collected from existing literature. None of the model input parameters was fit to the clinical data with which the model prediction is compared.
Results
The integrated model has been applied to predict the published clinical data of transdermal permeation of caffeine. The relative importance of the follicular pathway is analysed. Good agreement of the model prediction with the clinical data has been obtained. The simulation confirms that for caffeine the follicular route is important; the maximum bioavailable concentration of caffeine in systemic circulation with open hair follicles is predicted to be 20% higher than that when hair follicles are blocked.
Conclusions
The follicular pathway contributes to not only short time fast penetration, but also the overall systemic bioavailability. With such
in silico
model, useful information can be obtained for caffeine disposition and localised delivery in lipid, corneocytes, viable dermis, dermis and the hair follicle. Such detailed information is difficult to obtain experimentally.
Journal Article
Sex Differences in Liver Toxicity—Do Female and Male Human Primary Hepatocytes React Differently to Toxicants In Vitro?
by
Landesmann, Brigitte
,
Whelan, Maurice
,
Mennecozzi, Milena
in
Acetaminophen - toxicity
,
Analysis
,
Animal models
2015
There is increasing amount of evidence for sex variation in drug efficiency and toxicity profiles. Women are more susceptible than men to acute liver injury from xenobiotics. In general, this is attributed to sex differences at a physiological level as well as differences in pharmacokinetics and pharmacodynamics, but neither of these can give a sufficient explanation for the diverse responses to xenobiotics. Existing data are mainly based on animal models and limited data exist on in vitro sex differences relevant to humans. To date, male and female human hepatocytes have not yet been compared in terms of their responses to hepatotoxic drugs. We investigated whether sex-specific differences in acute hepatotoxicity can be observed in vitro by comparing hepatotoxic drug effects in male and female primary human hepatocytes. Significant sex-related differences were found for certain parameters and individual drugs, showing an overall higher sensitivity of female primary hepatocytes to hepatotoxicants. Moreover, our work demonstrated that high content screening is feasible with pooled primary human hepatocytes in suspension.
Journal Article
Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish
by
Lopez-Luna, Javier
,
Al-Jubouri, Qussay
,
Al-Nuaimy, Waleed
in
Acetic acid
,
Acetic Acid - toxicity
,
Acids
2017
Both adult and larval zebrafish have been demonstrated to show behavioural responses to noxious stimulation but also to potentially stress- and fear or anxiety- eliciting situations. The pain or nociceptive response can be altered and modulated by these situations in adult fish through a mechanism called stress-induced analgesia. However, this phenomenon has not been described in larval fish yet. Therefore, this study explores the behavioural changes in larval zebrafish after noxious stimulation and exposure to challenges that can trigger a stress, fear or anxiety reaction. Five-day post fertilization zebrafish were exposed to either a stressor (air emersion), a predatory fear cue (alarm substance) or an anxiogenic (caffeine) alone or prior to immersion in acetic acid 0.1%. Pre- and post-stimulation behaviour (swimming velocity and time spent active) was recorded using a novel tracking software in 25 fish at once. Results show that larvae reduced both velocity and activity after exposure to the air emersion and alarm substance challenges and that these changes were attenuated using etomidate and diazepam, respectively. Exposure to acetic acid decreased velocity and activity as well, whereas air emersion and alarm substance inhibited these responses, showing no differences between pre- and post-stimulation. Therefore, we hypothesize that an antinociceptive mechanism, activated by stress and/or fear, occur in 5dpf zebrafish, which could have prevented the larvae to display the characteristic responses to pain.
Journal Article
Toxicity of Weight Loss Agents
by
Yen, May
,
Ewald, Michele Burns
in
2,4-Dinitrophenol - toxicity
,
Anti-Obesity Agents - toxicity
,
Biomedical and Life Sciences
2012
Introduction: With the rise of the obesity epidemic in the United States over the last several decades and the medical complications seen with it, weight loss and dieting have become a national public health concern. Discussion: Because of their increased use and availability through internet sales, several different dieting agents were reviewed for potential toxicity. These included: syrup of ipecac, cathartics, human chorionic gonadotropin hormone, 2,4 Dinitrophenol, guar gum, phenylpropanolamine, ma huang/ ephedra, caffeine, clenbuterol, fenfluramine, sibutramine, thyroid hormone, orlistat and cannabinoid antagonists. Conclusions: With the internet making even banned products readily accessible, healthcare providers need to be aware of the potential toxicities of a wide range of weight loss agents. Our review covered topics we thought to be most historically significant as well as pertinent to the practice of medical toxicology today.
Journal Article
Sublethal effects of environmental concentrations of caffeine on a neotropical freshwater fish
by
Rocha, Vinicius Novaes
,
Roland Fábio
,
Almeida, Rafael M
in
Aquatic ecosystems
,
Caffeine
,
Catfish
2022
Caffeine is a contaminant frequently detected in water bodies. Growth trends in both human population and caffeine consumption per capita are expected to exacerbate the occurrence of caffeine in freshwaters. Yet the effects of caffeine on native fish fauna are poorly understood. We exposed larvae of an endemic Neotropical catfish (Rhamdia quelen) to a range of caffeine concentrations for 30 days. We found that larvae exposed to the highest concentration (16 mg L−1) showed skeletal deformations and reduced growth. We further compiled measured environmental concentrations of caffeine in surface freshwater globally and performed a risk assessment. Our analysis points to a low risk to R. quelen and equally sensitive fish species in ~90% of the freshwater ecosystems considered in our analysis. The risk quotient is higher in freshwater ecosystems of South and Central America, where R. quelen is endemic. Although the ecotoxicological risk is currently low in most places, increased caffeine consumption, exacerbated by the lack of sanitation, is expected to increase caffeine concentrations in many parts of the world, posing a threat of sublethal morphological effects to local fish species.
Journal Article
Investigation of potential behavioral and physiological effects of caffeine on D. magna
by
Dionísio, Ricardo
,
Dias de Alkimin, Gilberto
,
Nunes, Bruno
in
Addictions
,
Animals
,
Aquatic environment
2022
With the ever-increasing consumption of pharmaceutical compounds, their presence in the environment is now an undisputable reality. The majority of these compounds are released into the wild after their therapeutic use, as biotransformation products or in their original form. The presence of this class of compounds in the environment, due to their biological properties, can exert effects on non-target organisms, with adverse consequences. In addition, some bioactive substances, such as stimulants of the central nervous system, are also used by humans as part of their diet. The adverse consequences posed by such chemicals may be permanent or transient, if the exposure to xenobiotics is halted; it is thus of the paramount importance to study effects that result from long-term exposure to toxicants, but also the recovery of organisms previously exposed to such substances, especially if such chemicals may cause some type of addiction. Caffeine (1,3,7-trimethylxanthine) is a naturally occurring alkaloid found in many plants, being one of the most common stimulant/pharmaceutical compounds found in the environment. In addition, it is addictive, and strongly consumed by humans, a factor that contributes also for its continuous presence in the aquatic environment. The aim of this study was to evaluate the effects of environmentally relevant concentrations (0.08; 0.4; 2; 10; and 50 μg/L) of caffeine on behavior and physiological parameters (that are proxies of metabolic traits, such as oxygen uptake and glycogen content), in individuals of the freshwater crustacean species Daphnia magna, of distinct ages, and with or without a recovery period in the absence of caffeine. Regarding behavior, the results indicated that caffeine exposure altered the moved distance of the test organisms, but not according to a coherent pattern; low concentrations of caffeine reduced the movement of exposed daphnids, while higher levels did not have any measurable effect on this parameter. In addition, it was possible to identify subtle withdrawal effects (animals exposed to caffeine during 21 days and kept in uncontaminated media for 2 days). Regarding the other two studied parameters, caffeine exposure did not result in any significant modification in oxygen uptake and glycogen stores/reserves of the test organisms, in animals continuously exposed, or in those subjected to a recovery period, suggesting that despite a behavioral stimulatory effect, this was not followed by any metabolic change, and no addictive effect was possible to infer. The results showed that the presence of caffeine in environmental concentrations can induce mild behavioral effects at low, albeit realistic levels, but not capable of establishing clear biochemical changes.
Journal Article
Association between self-reported caffeine intake during pregnancy and social responsiveness scores in childhood: The EARLI and HOME studies
by
Croen, Lisa A.
,
Yolton, Kimberly
,
Patti, Marisa A.
in
Adult
,
Attention deficit hyperactivity disorder
,
Autism
2021
Maternal nutrition during gestation has been investigated for its role in child neurodevelopment. However, little is known about the potential impact of gestational caffeine exposure on child autistic behaviors. Here, we assess the relation between maternal caffeine intake during pregnancy and children’s behavioral traits related to Autism Spectrum Disorder (ASD). We harmonized data from two pregnancy cohorts, Early Autism Risk Longitudinal Investigation (EARLI) (n = 120), an enriched-risk cohort of mothers who previously had a child with ASD, from Pennsylvania, Maryland, and Northern California (2009–2012), and the Health Outcomes and Measures of the Environment (HOME) Study (n = 269), a general population cohort from Cincinnati, Ohio (2003–2006). Mothers self-reported caffeine intake twice during pregnancy. Caregivers reported child behavioral traits related to ASD using the Social Responsiveness Scale (SRS) when children were aged 3–8 years. Higher scores indicate more ASD-related behaviors. We estimated covariate-adjusted differences in continuous SRS T-scores per interquartile range increase in caffeine intake. Self-reported caffeine intake during pregnancy was positively associated with SRS T-scores among children in EARLI (β: 2.0; 95% CI -0.1, 4.0), but to a lesser extent in HOME (β: 0.6; 95% CI -0.5, 1.6). In HOME, pre-pregnancy body mass index (BMI) modified the association between caffeine intake and SRS T-scores, where more positive associations were observed among women with higher BMIs. Our findings suggest gestational caffeine intake may represent a marker of vulnerability to childhood ASD-related behaviors. Additional studies are warranted to extend these findings.
Journal Article
Caffeine as a contaminant of periphyton: ecological changes and impacts on primary producers
by
dos Santos Déborah Yara Alves Cursino
,
de Sousa Mariana Lopes
,
Chow Fungyi
in
Aquatic ecosystems
,
Aquatic environment
,
Beverages
2021
Every day, tons of caffeine is consumed by humans in beverages, medications or supplements, and a significant amount of this stimulant is released in domestic sewage. Once in aquatic environments caffeine interacts directly with the periphytic community, which is responsible for a significant part of primary production in aquatic ecosystems. However, the effects of exposure to caffeine are mostly unknown for both the periphyton and their predators. Aiming to comprehend the interaction between caffeine and the periphytic community, ecotoxicological experiments were performed by exposing a periphytic biofilm cultivated in the laboratory to different concentrations of caffeine, following concentrations found in domestic sewers. The impact of exposure to this contaminant was observed on the structure of the community through taxonomic evaluation, as well a set of physiological variables linked to primary production. After exposure to the highest caffeine concentration (300 µg L−1), the density of the genus Scenedesmus was severely affected, leading to an increase in cyanobacteria and diatoms. Both richness and diversity decreased after exposure, and there was lower photosynthetic activity, with light saturation point changing from 186 µmol m−2 s−1 in the control treatment to 108 µmol m−2 s−1 after exposure. Caffeine accumulation within the biofilm was also observed during the first 24 h, in the concentration of 0.14 µg /cm².
Journal Article