Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,758
result(s) for
"Calcitonin"
Sort by:
Cryo-EM structure of the active, G s -protein complexed, human CGRP receptor
by
Christopoulos, Arthur
,
Koole, Cassandra
,
Baumeister, Wolfgang
in
Binding Sites
,
Calcitonin Gene-Related Peptide - chemistry
,
Calcitonin Gene-Related Peptide - metabolism
2018
Calcitonin gene-related peptide (CGRP) is a widely expressed neuropeptide that has a major role in sensory neurotransmission. The CGRP receptor is a heterodimer of the calcitonin receptor-like receptor (CLR) class B G-protein-coupled receptor and a type 1 transmembrane domain protein, receptor activity-modifying protein 1 (RAMP1). Here we report the structure of the human CGRP receptor in complex with CGRP and the G
-protein heterotrimer at 3.3 Å global resolution, determined by Volta phase-plate cryo-electron microscopy. The receptor activity-modifying protein transmembrane domain sits at the interface between transmembrane domains 3, 4 and 5 of CLR, and stabilizes CLR extracellular loop 2. RAMP1 makes only limited direct contact with CGRP, consistent with its function in allosteric modulation of CLR. Molecular dynamics simulations indicate that RAMP1 provides stability to the receptor complex, particularly in the positioning of the extracellular domain of CLR. This work provides insights into the control of G-protein-coupled receptor function.
Journal Article
Targeting calcitonin gene-related peptide: a new era in migraine therapy
by
Pozo-Rosich, Patricia
,
Charles, Andrew
in
Antibodies, Monoclonal - pharmacology
,
Antibodies, Monoclonal - therapeutic use
,
Calcitonin
2019
Migraine is one of the most prevalent and disabling diseases worldwide, but until recently, few migraine-specific therapies had been developed. Extensive basic and clinical scientific investigation has provided strong evidence that the neuropeptide calcitonin gene-related peptide (CGRP) has a key role in migraine. This evidence led to the development of small molecule CGRP receptor antagonists and monoclonal antibodies targeting either CGRP or its receptor. Clinical trials investigating these therapies have consistently shown statistically significant efficacy for either the acute or preventive treatment of migraine. No serious safety or tolerability issues have been identified in the trials of the monoclonal antibody therapies. Although the appropriate place of these new migraine-specific therapies relative to other available acute and preventive treatments remains to be determined, a growing body of evidence shows that therapeutic approaches targeting CGRP have the potential to transform the clinical management of migraine.
Journal Article
CGRP and Migraine: The Role of Blocking Calcitonin Gene-Related Peptide Ligand and Receptor in the Management of Migraine
by
Rapoport, Alan M.
,
Michael, Rebecca L.
,
Maasumi, Kasra
in
Antibodies, Monoclonal - pharmacology
,
Antibodies, Monoclonal - therapeutic use
,
Calcitonin
2018
Migraine is a highly prevalent, complex neurological disorder. The burden of disease and the direct/indirect annual costs are enormous. Thus far, treatment options have been inadequate and mostly based on trial and error, leaving a significant unmet need for effective therapies. While the underlying pathophysiology of migraine is incompletely understood, blocking the calcitonin gene-related peptide (CGRP) using monoclonal antibodies targeting CGRP or its receptor and small molecule CGRP receptor antagonists (gepants) have emerged as a promising therapeutic opportunity for the management of migraine. In this review, we discuss new concepts in the pathophysiology of migraine and the role of CGRP, the current guidelines for treating migraine preventively, the medications that are being used, and their limitations. We then discuss small molecule CGRP receptor antagonists, monoclonal antibodies to CGRP ligand and receptor, as well as the detailed results of Phase II and III trials involving these novel treatments. We conclude with a discussion of the implications of blocking CGRP and its receptor.
Journal Article
European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update
by
Martelletti, Paolo
,
Uluduz, Derya
,
Bendtsen, Lars
in
Calcitonin
,
Calcitonin gene-related peptide
,
Clinical trials
2022
BackgroundA previous European Headache Federation (EHF) guideline addressed the use of monoclonal antibodies targeting the calcitonin gene-related peptide (CGRP) pathway to prevent migraine. Since then, randomized controlled trials (RCTs) and real-world evidence have expanded the evidence and knowledge for those treatments. Therefore, the EHF panel decided to provide an updated guideline on the use of those treatments.MethodsThe guideline was developed following the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. The working group identified relevant questions, performed a systematic review and an analysis of the literature, assessed the quality of the available evidence, and wrote recommendations. Where the GRADE approach was not applicable, expert opinion was provided.ResultsWe found moderate to high quality of evidence to recommend eptinezumab, erenumab, fremanezumab, and galcanezumab in individuals with episodic and chronic migraine. For several important clinical questions, we found not enough evidence to provide evidence-based recommendations and guidance relied on experts’ opinion. Nevertheless, we provided updated suggestions regarding the long-term management of those treatments and their place with respect to the other migraine preventatives.ConclusionMonoclonal antibodies targeting the CGRP pathway are recommended for migraine prevention as they are effective and safe also in the long-term.
Journal Article
Pipeline for development of acylated peptide based CGRP receptor antagonist with extended half-life for migraine treatment
2025
Migraine is a debilitating headache disorder. The disease has neurovascular origin and migraine attacks can be elicited by vasodilative neuropeptides such as alpha calcitonin gene-related peptide (αCGRP). Antagonizing CGRP actions in migraine patients has proven clinically efficient. Here, we present a pipeline for development of a peptide-based hCGRP receptor antagonist with increased half-life capable of antagonising the vasodilatory effect of hαCGRP. A series of hαCGRP8-37 analogues carrying a C18-or C20-diacid lipidation was screened for their antagonism against the hCGRP receptor. hαCGRP8-37 analogues with a C20-diacid were 2-6 fold more potent than analogues conjugated with a C18-diacid. Half-life of hαCGRP8-37 analogues carrying a C20-diacid was estimated in mice in a pilot study (n = 1–2). Half-lives ranged from 7.3 to 13.7 h. An hαCGRP8-37 analogue conjugated with a C20 diacid at position 25 was subjected to an amino acid substitution scan to identify mutations that could further enhance hCGRP receptor antagonism. Substituting alanine with serine at position 36 resulted in a ~ 4 fold gain of potency. Vasodilative actions of hαCGRP were successfully antagonized by hαCGRP8-37 analogues carrying a C20 diacid at position 25. Our findings demonstrate that lipidation can improve hαCGRP8-37 pharmacokinetics while maintaining hαCGRP antagonism, thus demonstrating potential for a peptide-based migraine treatment strategy.
Journal Article
Expression of the CGRP Family of Neuropeptides and their Receptors in the Trigeminal Ganglion
2020
The calcitonin gene-related peptide (CGRP) family of neuropeptides, consists of CGRP, adrenomedullin, amylin, and calcitonin. The receptors consist of either calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) which for function needs an accessory protein, receptor activity-modifying proteins (RAMPs). CGRP has a pivotal role in primary headaches but the role of the other members of the CGRP family of peptides in headaches is not known. Here, we describe the expression of these molecules in the trigeminal ganglion (TG) to understand more on their possible role(s). Single or double immunohistochemistry were applied on frozen sections of rat TG using primary antibodies against CGRP, procalcitonin, calcitonin, adrenomedullin, amylin, RAMP1/2/3, CLR, and CTR. In addition, mRNA expression was measured by quantitative qPCR on TGs. CGRP and calcitonin showed rich expression in the cytoplasm of small to medium-sized neurons, and co-localized sometimes. Procalcitonin was observed in the glial cells. Immunoreactive fibers storing both CGRP and calcitonin were also observed. Adrenomedullin immunoreactivity was found in the satellite glial cells and in fibers, probably the myelinating Schwann cells. Amylin was found in the cytoplasm in many TG neurons. Levels of mRNA expression for adrenomedullin, amylin, CLR, RAMP1, RAMP2, RAMP3, and CTR were measured using qPCR. The experiments verified the expression of mRNA in the TG with the exception of CTR, which was above the limit of detection indicating little or no mRNA expression. In addition to the well-known CGRP receptor (CLR/RAMP1) and the receptor for calcitonin—CTR, we propose that other receptors exist in the rat TG: adrenomedullin receptor AM2 (CLR/RAMP3) in mainly the satellite glial cells, amylin receptors AMY1 (CTR/RAMP1) in mainly neurons, and AMY3 (CTR/RAMP3) in the satellite glial cells. It is important to compare peptides and receptors side-by-side in studies to help address questions of actions resulting from cross-reactivity between receptors. Several of the diverse biological actions of the CGRP family of peptides are clinically relevant. Our findings demonstrate the specific ligand and receptor sites in the rat trigeminal ganglion, highlighting recognition mechanisms to facilitate drug development.
Journal Article
Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats
2016
A novel stainless-steel pin has been engineered with a pure magnesium core that promotes improved fracture healing in rats by inducing local production of a key neuropeptide for osteogenesis.
Orthopedic implants containing biodegradable magnesium have been used for fracture repair with considerable efficacy; however, the underlying mechanisms by which these implants improve fracture healing remain elusive. Here we show the formation of abundant new bone at peripheral cortical sites after intramedullary implantation of a pin containing ultrapure magnesium into the intact distal femur in rats. This response was accompanied by substantial increases of neuronal calcitonin gene-related polypeptide-α (CGRP) in both the peripheral cortex of the femur and the ipsilateral dorsal root ganglia (DRG). Surgical removal of the periosteum, capsaicin denervation of sensory nerves or knockdown
in vivo
of the CGRP-receptor-encoding genes
Calcrl
or
Ramp1
substantially reversed the magnesium-induced osteogenesis that we observed in this model. Overexpression of these genes, however, enhanced magnesium-induced osteogenesis. We further found that an elevation of extracellular magnesium induces magnesium transporter 1 (MAGT1)-dependent and transient receptor potential cation channel, subfamily M, member 7 (TRPM7)-dependent magnesium entry, as well as an increase in intracellular adenosine triphosphate (ATP) and the accumulation of terminal synaptic vesicles in isolated rat DRG neurons. In isolated rat periosteum-derived stem cells, CGRP induces CALCRL- and RAMP1-dependent activation of cAMP-responsive element binding protein 1 (CREB1) and SP7 (also known as osterix), and thus enhances osteogenic differentiation of these stem cells. Furthermore, we have developed an innovative, magnesium-containing intramedullary nail that facilitates femur fracture repair in rats with ovariectomy-induced osteoporosis. Taken together, these findings reveal a previously undefined role of magnesium in promoting CGRP-mediated osteogenic differentiation, which suggests the therapeutic potential of this ion in orthopedics.
Journal Article
Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission
by
Veldhuis, Nicholas A.
,
Halls, Michelle L.
,
Yarwood, Rebecca E.
in
Adrenergic Antagonists - pharmacology
,
Amino acids
,
Animals
2017
G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in endosomes control pathophysiological processes in vivo and are therapeutic targets remains uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR endocytosis and activated protein kinase C (PKC) in the cytosol and extracellular signal regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from endosomal CLR. A cholestanol-conjugated antagonist, CGRP8–37, accumulated in CLR-containing endosomes and selectively inhibited CLR signaling in endosomes. CGRP caused sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK, and PKC suppressed persistent neuronal excitation. CGRP8–37–cholestanol, but not unconjugated CGRP8–37, prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8–37–cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin, or complete Freund’s adjuvant more effectively than unconjugated CGRP8–37. Our results show that CLR signals from endosomes to control pain transmission and identify CLR in endosomes as a therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that deserve further attention.
Journal Article
Phase-plate cryo-EM structure of a class B GPCR–G-protein complex
by
Christopoulos, Arthur
,
Tarrasch, Jeffrey
,
Miller, Laurence J.
in
631/154/436/2387
,
631/535/1258/1259
,
Binding Sites
2017
Class B G-protein-coupled receptors are major targets for the treatment of chronic diseases, such as osteoporosis, diabetes and obesity. Here we report the structure of a full-length class B receptor, the calcitonin receptor, in complex with peptide ligand and heterotrimeric Gα
s
βγ protein determined by Volta phase-plate single-particle cryo-electron microscopy. The peptide agonist engages the receptor by binding to an extended hydrophobic pocket facilitated by the large outward movement of the extracellular ends of transmembrane helices 6 and 7. This conformation is accompanied by a 60° kink in helix 6 and a large outward movement of the intracellular end of this helix, opening the bundle to accommodate interactions with the α5-helix of Gα
s
. Also observed is an extended intracellular helix 8 that contributes to both receptor stability and functional G-protein coupling via an interaction with the Gβ subunit. This structure provides a new framework for understanding G-protein-coupled receptor function.
Volta phase-plate cryo-electron microscopy reveals the structure of the full-length calcitonin receptor in complex with its peptide ligand and Gα
s
βγ.
GPCR structure solved by cryo-electron microscopy
The use of cryo-electron microscopy (cryo-EM) in structural biology has exploded in recent years as it provides structural information at near atomic resolution without the need for crystallization. However, cryo-EM has typically been limited to proteins larger than 200 kDa because of issues with low contrast. Patrick Sexton and colleagues report the structure of the full-length calcitonin receptor in complex with its peptide ligand and Gα
s
βγ protein by Volta phase-plate single-particle cryo-EM. This is the first G-protein-coupled receptor (GPCR) structure to be solved at high resolution by cryo-EM, the first full-length class B GPCR reported and only the second in complex with the full heterotrimeric G protein. The structure shows the GPCR in the active state and reveals key information about the conformational changes associated with peptide agonist binding and G-protein coupling in class B receptors.
Journal Article