Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,059 result(s) for "Calcium-Binding Proteins - analysis"
Sort by:
Investigation of the Acute Effects of Two Different Preoxygenation Methods on Neurodegenerative Biomarkers in Laparoscopic Cholecystectomy Surgery
Background and Objectives: Oxygen is essential for all living organisms and plays a critical role in anesthesia and intensive care practices. However, the notion that unlimited oxygen therapy is harmless is a misconception. Our study investigates the acute effects of different preoxygenation methods on hemodynamic parameters and neurodegenerative biomarkers in patients undergoing laparoscopic cholecystectomy surgery. Materials and Methods: This prospective, randomized, controlled study included 52 patients undergoing elective laparoscopic cholecystectomy under general anesthesia. Patients were divided into two groups: Group I received standard preoxygenation (100% FiO2 for 3 min), while Group II underwent rapid preoxygenation (eight deep breaths over 30 s to 1 min). Hemodynamic parameters (SAP, DAP, MAP, and SpO2) and neurodegenerative biomarkers (pTau, S100B, NSE, NfL, GFAP) were measured after preoxygenation, after intubation, and at the end of surgery. Results: Group I exhibited a significant increase in levels of pTau, S100B, NSE, and GFAP, indicating higher neuronal and glial cell stress compared to Group II (p < 0.001). No significant increase in NfL levels was observed in either group. Hemodynamic parameters (HR, SAP, DAP, MAP) were significantly higher during and after preoxygenation in Group I, suggesting an increased stress response. Group II showed lower levels of acute neurotoxicity and oxidative stress. Conclusions: Our findings indicate that preoxygenation with 100% FiO2 induces stress in neuronal cells, axons, and glial cells, leading to an increase in neurodegenerative biomarkers. Optimizing preoxygenation strategies is crucial to reduce oxidative stress and improve neurological outcomes for surgical patients.
High prevalence of NSAID enteropathy as shown by a simple faecal test
BACKGROUND The diagnosis of non-steroidal anti-inflammatory drug (NSAID) induced enteropathy is difficult, requiring enteroscopy or the use of four day faecal excretion of 111In labelled white cells. AIMS To assess faecal calprotectin (a non-degraded neutrophil cytosolic protein) as a method for diagnosing NSAID enteropathy. METHODS Single stool faecal calprotectin concentrations were compared with the four day faecal excretion of 111In labelled white cells in 47 patients taking NSAIDs. The prevalence and severity of NSAID enteropathy was assessed using this method in 312 patients (192 with rheumatoid arthritis, 65 with osteoarthritis, 55 with other conditions) taking 18 different NSAIDs. RESULTS The four day faecal excretion of 111In white cells correlated significantly with faecal calprotectin concentrations. In the group of 312 patients on NSAIDs faecal calprotectin concentrations were significantly higher than in controls, the prevalence of NSAID enteropathy being 44%. The prevalence and severity of NSAID enteropathy was independent of the particular type or dose of NSAID being taken or other patient variables. CONCLUSIONS Assay of faecal calprotectin provides a simple practical method for diagnosing NSAID enteropathy in man. Forty four per cent of patients receiving these drugs had NSAID induced enteropathy when assessed by this technique; 20% of these had comparable levels of inflammation to that previously reported in patients with inflammatory bowel disease.
Directed evolution of APEX2 for electron microscopy and proximity labeling
A genetically encoded peroxidase with improved sensitivity, APEX2, is reported for electron microscopy and proximity labeling at low expression levels. APEX is an engineered peroxidase that functions as an electron microscopy tag and a promiscuous labeling enzyme for live-cell proteomics. Because limited sensitivity precludes applications requiring low APEX expression, we used yeast-display evolution to improve its catalytic efficiency. APEX2 is far more active in cells, enabling the use of electron microscopy to resolve the submitochondrial localization of calcium uptake regulatory protein MICU1. APEX2 also permits superior enrichment of endogenous mitochondrial and endoplasmic reticulum membrane proteins.
Changes in Calcium-Binding Protein Expression in Human Cortical Contusion Tissue
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.
Arabidopsis Microtubule-Destabilizing Protein 25 Functions in Pollen Tube Growth by Severing Actin Filaments
The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament-severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca²⁺, in vitro. Analysis of a mutant that bears a point mutation at the Ca²⁺ binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca²⁺ level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament-severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth.
Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome
An in vitro model of premature ageing The premature ageing disorder Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic condition characterized by a rapid onset of signs associated with normal ageing, such as atherosclerosis and the degeneration of vascular smooth-muscle cells. Liu et al . report that the altered structure of the nuclear envelope and epigenetic modifications that accumulate during physiological ageing or under specific disease conditions can be restored to normalcy by reprogramming somatic cell lines established with fibroblasts from patients with HGPS as induced pluripotent stem (iPS) cells. Directed differentiation of the resulting iPS cells as vascular smooth-muscle cells then leads to the appearance of the premature senescence phenotypes associated with vascular ageing. This HGPS iPS cell model provides a way to study the mechanisms regulating premature and normal ageing in vitro . Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease 1 , 2 , 3 , 4 , 5 , characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs) 6 , 7 , 8 . HGPS is caused by a single point mutation in the lamin A ( LMNA ) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin 9 , 10 , 11 , 12 . Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing 6 , 12 , 13 , our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.
Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival
Impaired apoptosis is one of the hallmarks of cancer. Caspase-3 and -8 are key regulators of the apoptotic response and have been shown to interact with the calpain family, a group of cysteine proteases, during tumorigenesis. The current study sought to investigate the prognostic potential of caspase-3 and -8 in breast cancer, as well as the prognostic value of combinatorial caspase and calpain expression. A large cohort (n = 1902) of early stage invasive breast cancer patients was used to explore the expression of caspase-3 and -8. Protein expression was examined using standard immunohistochemistry on tissue microarrays. High caspase-3 expression, but not caspase-8, is significantly associated with adverse breast cancer-specific survival ( P  = 0.008 and P  = 0.056, respectively). Multivariate analysis showed that caspase-3 remained an independent factor when confounding factors were included (hazard ratio (HR) 1.347, 95% confidence interval (CI) 1.086–1.670; P  = 0.007). The analyses in individual subgroups demonstrated the significance of caspase-3 expression in clinical outcomes in receptor positive (ER, PR or HER2) subgroups ( P  = 0.001) and in non-basal like subgroup (P  = 0.029). Calpain expression had been previously assessed. Significant association was also found between high caspase-3/high calpain-1 and breast cancer-specific survival in the total patient cohort ( P  = 0.005) and basal-like subgroup ( P  = 0.034), as indicated by Kaplan–Meier analysis. Caspase-3 expression is associated with adverse breast cancer-specific survival in breast cancer patients, and provides additional prognostic values in distinct phenotypes. Combinatorial caspase and calpain expression can predict worse prognosis, especially in basal-like phenotypes. The findings warrant further validation studies in independent multi-centre patient cohorts.
Mycobacterium vaccae immunization in rats ameliorates features of age-associated microglia activation in the amygdala and hippocampus
Aging and reduced exposure to environmental microbes can both potentiate neuroinflammatory responses. Prior studies indicate that immunization with the immunoregulatory and anti-inflammatory bacterium, Mycobacterium vaccae ( M. vaccae ), in aged rats limits neuroimmune activation and cognitive impairments. However, the mechanisms by which M. vaccae immunization ameliorates age-associated neuroinflammatory “priming” and whether microglia are a primary target remain unclear. Here, we investigated whether M. vaccae immunization protects against microglia morphological changes in response to aging. Adult (3 mos) and aged (24 mos) Fisher 344 × Brown Norway rats were immunized with either M. vaccae or vehicle once every week for 3 weeks. Aging led to elevated Iba1 immunoreactivity, microglial density, and deramification of microglia processes in the hippocampus and amygdala but not other brain regions. Additionally, aged rats exhibited larger microglial somas in the dorsal hippocampus, suggestive of a more activated phenotype. Notably, M. vaccae treatment ameliorated indicators of microglia activation in both the amygdala and hippocampus. While changes in morphology appeared to be region-specific, gene markers indicative of microglia activation were upregulated by age and lowered in response to M. vaccae in all brain regions evaluated. Taken together, these data suggest that peripheral immunization with M. vaccae quells markers of age-associated microglia activation.
Identification and Clinical Validation of Key Extracellular Proteins as the Potential Biomarkers in Relapsing-Remitting Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) mediated by autoimmunity. No objective clinical indicators are available for the diagnosis and prognosis of MS. Extracellular proteins are most glycosylated and likely to enter into the body fluid to serve as potential biomarkers. Our work will contribute to the in-depth study of the functions of extracellular proteins and the discovery of disease biomarkers. MS expression profiling data of the human brain was downloaded from the Gene Expression Omnibus (GEO). Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases. GO and KEGG were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Key EP-DEGs levels were detected in the CSF of MS patients. ROC curve and survival analysis were used to evaluate the diagnostic and prognostic ability of key EP-DEGs. We screened 133 EP-DEGs from DEGs. EP-DEGs were enriched in the collagen-containing extracellular matrix, signaling receptor activator activity, immune-related pathways, and PI3K-Akt signaling pathway. The PPI network of EP-DEGs had 85 nodes and 185 edges. We identified 4 key extracellular proteins IL17A, IL2, CD44, IGF1, and 16 extracellular proteins that interacted with IL17A. We clinically verified that IL17A levels decreased, but Del-1 and resolvinD1 levels increased. The diagnostic accuracy of Del-1 (AUC: 0.947) was superior to that of IgG (AUC: 0.740) with a sensitivity of 82.4% and a specificity of 100%. High Del-1 levels were significantly associated with better relapse-free and progression-free survival. IL17A, IL2, CD44, and IGF1 may be key extracellular proteins in the pathogenesis of MS. IL17A, Del-1, and resolvinD1 may co-regulate the development of MS and Del-1 is a potential biomarker of MS. We used bioinformatics methods to explore the biomarkers of MS and validated the results in clinical samples. The study provides a theoretical and experimental basis for revealing the pathogenesis of MS and improving the diagnosis and prognosis of MS.
Calponin-3 is critical for coordinated contractility of actin stress fibers
Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescence-recovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.