Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
511
result(s) for
"Calgranulin A - metabolism"
Sort by:
Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study
by
Stanevicha, Valda
,
Uziel, Yosef
,
Holzinger, Dirk
in
Antirheumatic Agents - therapeutic use
,
Arthritis
,
Arthritis, Juvenile - drug therapy
2012
Objectives Juvenile idiopathic arthritis (JIA) is a chronic inflammatory joint disease affecting children. Even if remission is successfully induced, about half of the patients experience a relapse after stopping anti-inflammatory therapy. The present study investigated whether patients with JIA at risk of relapse can be identified by biomarkers even if clinical signs of disease activity are absent. Methods Patients fulfilling the criteria of inactive disease on medication were included at the time when all medication was withdrawn. The phagocyte activation markers S100A12 and myeloid-related proteins 8/14 (MRP8/14) were compared as well as the acute phase reactant high-sensitivity C reactive protein (hsCRP) as predictive biomarkers for the risk of a flare within a time frame of 6 months. Results 35 of 188 enrolled patients experienced a flare within 6 months. Clinical or standard laboratory parameters could not differentiate between patients at risk of relapse and those not at risk. S100A12 and MRP8/14 levels were significantly higher in patients who subsequently developed flares than in patients with stable remission. The best single biomarker for the prediction of flare was S100A12 (HR 2.81). The predictive performance may be improved if a combination with hsCRP is used. Conclusions Subclinical disease activity may result in unstable remission (ie, a status of clinical but not immunological remission). Biomarkers such as S100A12 and MRP8/14 inform about the activation status of innate immunity at the molecular level and thereby identify patients with unstable remission and an increased risk of relapse.
Journal Article
Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is Modulated by n-3 PUFA during Inflammation in Adipose Tissue and Mononuclear Cells
by
Reilly, Muredach P.
,
Ferguson, Jane F.
,
Shah, Rachana D.
in
Adipocytes
,
Adipose tissue
,
Adipose Tissue - drug effects
2017
Calgranulin genes (S100A8, S100A9 and S100A12) play key immune response roles in inflammatory disorders, including cardiovascular disease. Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) may have systemic and adipose tissue-specific anti-inflammatory and cardio-protective action. Interactions between calgranulins and the unsaturated fatty acid arachidonic acid (AA) have been reported, yet little is known about the relationship between calgranulins and the LC n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored tissue-specific action of calgranulins in the setting of evoked endotoxemia and n-3 PUFA supplementation. Expression of calgranulins in adipose tissue in vivo was assessed by RNA sequencing (RNASeq) before and after n-3 PUFA supplementation and evoked endotoxemia in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) Study. Subjects received n-3 PUFA (n = 8; 3600mg/day EPA/DHA) or matched placebo (n = 6) for 6-8 weeks, before completing an endotoxin challenge (LPS 0.6 ng/kg). Calgranulin genes were up-regulated post-LPS, with greater increase in n-3 PUFA (S100A8 15-fold, p = 0.003; S100A9 7-fold, p = 0.003; S100A12 28-fold, p = 0.01) compared to placebo (S100A8 2-fold, p = 0.01; S100A9 1.4-fold, p = 0.4; S100A12 5-fold, p = 0.06). In an independent evoked endotoxemia study, calgranulin gene expression correlated with the systemic inflammatory response. Through in vivo and in vitro interrogation we highlight differential responses in adipocytes and mononuclear cells during inflammation, with n-3 PUFA leading to increased calgranulin expression in adipose, but decreased expression in circulating cells. In conclusion, we present a novel relationship between n-3 PUFA anti-inflammatory action in vivo and cell-specific modulation of calgranulin expression during innate immune activation.
Journal Article
Inhibition of intestinal polyp growth by oral ingestion of bovine lactoferrin and immune cells in the large intestine
2014
Studies using animal models have demonstrated that ingestion of bovine lactoferrin (bLF) inhibits carcinogenesis in the colon and other organs of experimental animals. As a result of these studies, a blinded, randomized, controlled clinical trial was conducted in the National Cancer Center Hospital, Tokyo, Japan to determine whether ingestion of bLF had an effect on the growth of colorectal polyps in humans. Patients with colorectal polyps ≤5 mm diameter and likely to be adenomas ingested 0, 1.5, or 3.0 g bLF daily for 1 year. Ingestion of 3.0 g bLF suppressed the growth of colorectal polyps and increased the level of serum human lactoferrin in trial participants 63 years old or younger. The purpose of the present study was to investigate correlations between immune parameters and changes in polyp size. Trial participants with regressing polyps had increased NK cell activity, increased serum hLF levels (indicating increased neutrophil activity), and increased numbers of CD4+ cells in the polyps. These findings are consistent with a correlation between higher immune activity and suppression of colorectal polyps. In addition, participants with regressing polyps had lower numbers of PMNs and increased numbers of S100A8+ cells in the polyps, consistent with a correlation between lower inflammatory potential in the colon and suppression of colorectal polyps. Trial participants ingesting bLF had increased serum hLF levels, a possible increase in systemic NK cell activity, and increased numbers of CD4+ and CD161+ cells in the polyps. Taken together, our findings suggest that bLF suppressed colorectal polyps by enhancing immune responsiveness.
Journal Article
Induction of myelodysplasia by myeloid-derived suppressor cells
by
De Witte, Theo
,
Youn, Je-in
,
Gabrilovich, Dmitry I.
in
Adoptive Transfer
,
Animals
,
Biomedical research
2013
Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.
Journal Article
E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation
by
Roth, Johannes
,
Wackerbarth, Lou Martha
,
Piantoni, Chiara
in
631/250/2504/223/1699
,
631/250/256/2177
,
Biomedical and Life Sciences
2023
S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton’s tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel K
V
1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.
Neutrophils can release S100A8/S100A9 as an alarmin via gasdermin D pores. Here, the authors untangle the regulatory mechanisms driving this pathway and show that active repair processes make these pores transient, which can prevent the usual lytic cell death.
Journal Article
The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase
by
Miyake, Kensuke
,
Hiratsuka, Sachie
,
Watanabe, Akira
in
Accumulation
,
Animals
,
Biomedical and Life Sciences
2008
The production of chemoattractants in the pre-metastatic lung can be induced by distant primary tumours. The chemoattractants S100A8 and S100A9 induce serum amyloid A3 and TLR4 activation and cause an inflammation-like state that facilitates metastasis.
A large number of macrophages and haematopoietic progenitor cells accumulate in pre-metastatic lungs
1
,
2
in which chemoattractants, such as S100A8 and S100A9, are produced by distant primary tumours serving as metastatic soil
3
. The exact mechanism by which these chemoattractants elicit cell accumulation is not known. Here, we show that serum amyloid A (SAA) 3, which is induced in pre-metastatic lungs by S100A8 and S100A9, has a role in the accumulation of myeloid cells and acts as a positive-feedback regulator for chemoattractant secretion. We also show that in lung endothelial cells and macrophages, Toll-like receptor (TLR) 4 acts as a functional receptor for SAA3 in the pre-metastatic phase. In our study, SAA3 stimulated NF-κB signalling in a TLR4-dependent manner and facilitated metastasis. This inflammation-like state accelerated the migration of primary tumour cells to lung tissues, but this was suppressed by the inhibition of either TLR4 or SAA3. Thus, blocking SAA3–TLR4 function in the pre-metastatic phase could prove to be an effective strategy for the prevention of pulmonary metastasis.
Journal Article
Deficiency of S100A9 Alleviates Sepsis-Induced Acute Liver Injury through Regulating AKT-AMPK-Dependent Mitochondrial Energy Metabolism
by
Li, Huihua
,
Wu, Feng
,
Teng, Fei
in
AMP-Activated Protein Kinases - metabolism
,
Animals
,
Apoptosis
2023
Acute liver injury (ALI) is recognized as a serious complication of sepsis in patients in intensive care units (ICUs). S100A8/A9 is known to promote inflammation and immune responses. However, the role of S100A8/A9 in the regulation of sepsis-induced ALI remains known. Our results indicated that S100A8/A9 expression was significantly upregulated in the livers of septic mice 24 h after cecal ligation and a puncture (CLP) operation. Moreover, S100A9-KO in mice markedly attenuated CLP-induced liver dysfunction and injury, promoting the AMPK/ACC/GLUT4-mediated increases in fatty acid and glucose uptake as well as the improvement in mitochondrial function and ATP production. In contrast, treatment with the AMPK inhibitor Compound C reversed the inhibitory effects of S100A9 KO on CLP-induced liver dysfunction and injury in vivo. Finally, the administration of the S100A9 inhibitor Paquinimod (Paq) to WT mice protected against CLP-induced mortality, liver injury and mitochondrial dysfunction. In summary, our findings demonstrate for the first time that S100A9 plays an important pro-inflammatory role in sepsis-mediated ALI by regulating AKT-AMPK-dependent mitochondrial energy metabolism and highlights that targeting S100A9 may be a promising new approach for the prevention and treatment of sepsis-related liver injury.
Journal Article
Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice
by
Fujiu, Katsuhito
,
Nagai, Ryozo
,
Manabe, Ichiro
in
Animals
,
Biomedical research
,
Calgranulin A - genetics
2011
Renal tubulointerstitial damage is the final common pathway leading from chronic kidney disease to end-stage renal disease. Inflammation is clearly involved in tubulointerstitial injury, but it remains unclear how the inflammatory processes are initiated and regulated. Here, we have shown that in the mouse kidney, the transcription factor Krüppel-like factor-5 (KLF5) is mainly expressed in collecting duct epithelial cells and that Klf5 haploinsufficient mice (Klf5+/- mice) exhibit ameliorated renal injury in the unilateral ureteral obstruction (UUO) model of tubulointerstitial disease. Additionally, Klf5 haploinsufficiency reduced accumulation of CD11b+ F4/80(lo) cells, which expressed proinflammatory cytokines and induced apoptosis among renal epithelial cells, phenotypes indicative of M1-type macrophages. By contrast, it increased accumulation of CD11b+ F4/80(hi) macrophages, which expressed CD206 and CD301 and contributed to fibrosis, in part via TGF-β production--phenotypes indicative of M2-type macrophages. Interestingly, KLF5, in concert with C/EBPα, was found to induce expression of the chemotactic proteins S100A8 and S100A9, which recruited inflammatory monocytes to the kidneys and promoted their activation into M1-type macrophages. Finally, assessing the effects of bone marrow-specific Klf5 haploinsufficiency or collecting duct- or myeloid cell-specific Klf5 deletion confirmed that collecting duct expression of Klf5 is essential for inflammatory responses to UUO. Taken together, our results demonstrate that the renal collecting duct plays a pivotal role in the initiation and progression of tubulointerstitial inflammation.
Journal Article
S100A8/A9 Is a Marker for the Release of Neutrophil Extracellular Traps and Induces Neutrophil Activation
by
Verstegen, Bibian
,
Aarts, Cathelijn E. M.
,
van Kleef, Nadine D.
in
Acetic acid
,
Antibodies
,
Calgranulin A - metabolism
2022
Neutrophils are the most abundant innate immune cells in the circulation and they are the first cells recruited to sites of infection or inflammation. Almost half of the intracellular protein content in neutrophils consists of S100A8 and S100A9, though there has been controversy about their actual localization. Once released extracellularly, these proteins are thought to act as damage-associated molecular patterns (DAMPs), though their mechanism of action is not well understood. These S100 proteins mainly form heterodimers (S100A8/A9, also known as calprotectin) and this heterocomplex is recognized as a useful biomarker for several inflammatory diseases. We observed that S100A8/A9 is highly present in the cytoplasmic fraction of neutrophils and is not part of the granule content. Furthermore, we found that S100A8/A9 was not released in parallel with granular content but upon the formation of neutrophil extracellular traps (NETs). Accordingly, neutrophils of patients with chronic granulomatous disease, who are deficient in phorbol 12-myristate 13-acetate (PMA)-induced NETosis, did not release S100A8/A9 upon PMA stimulation. Moreover, we purified S100A8/A9 from the cytoplasmic fraction of neutrophils and found that S100A8/A9 could induce neutrophil activation, including adhesion and CD11b upregulation, indicating that this DAMP might amplify neutrophil activation.
Journal Article
Semaglutide ameliorates obesity-induced cardiac inflammation and oxidative stress mediated via reduction of neutrophil Cxcl2, S100a8, and S100a9 expression
2024
Obesity, which is driven by inflammation and oxidative stress, is a risk factor for cardiovascular disease. Semaglutide, a glucagon-like peptide-1 receptor agonist, is an antidiabetic drug with major effects on weight loss. In this study, single-cell transcriptomics was used to examine non-cardiomyocytes to uncover the mechanism of obesity-induced myocardial damage and the cardioprotective impact of semaglutide. We constructed obese mouse models and measured Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Reactive Oxygen Species (ROS), and Malonic dialdehyde (MDA) levels in serum and heart tissue to determine the levels of inflammation and oxidative stress in obesity and the effect of semaglutide on these levels. Then, utilizing single-cell transcriptomes to screen for key cell populations and differentially expressed genes (DEGs), we assessed the effects of obesity and semaglutide on non-cardiac cells. Finally, a DEG localization analysis was performed to explore DEGs as well as cell types associated with inflammation and oxidative stress. Semaglutide reduced increased TNF-α, IL-6, ROS, and MDA levels in serum and cardiac tissues in obese mouse. Several genes are closely associated with inflammation and oxidative stress. Chemokine (C-X-C motif) ligand 2 (Cxcl2), S100 calcium binding protein A8 (S100a8), and S100 calcium binding protein A9 (S100a9), which were elevated in obesity but decreased following semaglutide treatment, were also expressed particularly in neutrophils. Finally, by decreasing neutrophil Cxcl2, S100a8, and S100a9 expressions, semaglutide may help to reduce cardiac inflammation and oxidative stress. Semaglutide significantly reduced body weight in obese mice as well as exerted anti-inflammatory and antioxidant effects possibly by inhibiting the expression of S100a8, S100a9, and Cxcl2 in neutrophils. These discoveries are expected to reveal new molecular mechanisms underlying obesity-related heart damage and semaglutide's cardioprotective properties.
Journal Article