Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
96
result(s) for
"Callicarpa"
Sort by:
Callicarpa Species from Central Vietnam: Essential Oil Compositions and Mosquito Larvicidal Activities
2020
There are around 140 species in the genus Callicarpa, with 23 species occurring in Vietnam. The Vietnamese Callicarpa species have been poorly studied. In this work, the leaf essential oils of C. bodinieri, C. candicans, C. formosana, C. longifolia, C. nudiflora, C. petelotii, C. rubella, and C. sinuata, have been obtained from plants growing in central Vietnam. The chemical compositions of the essential oils were determined using gas chromatography – mass spectrometry. Mosquito larvicidal activities of the essential oils were carried out against Aedes aegypti. All of the Callicarpa leaf essential oils showed larvicidal activity, but two samples of C. candicans were particularly active with 48-h LC50 values of 2.1 and 3.8 μg/mL. Callicarpa candicans essential oil should be considered as a potential alternative mosquito control agent.
Journal Article
Evaluating Beautyberry and Fig Species as Potential Hosts of Invasive Crapemyrtle Bark Scale in the United States
2022
Crapemyrtle bark scale [CMBS ( Acanthococcus lagerstroemiae )], a newly emerged pest in the United States, has spread to 16 U.S. states and unexpectedly spread on a native species american beautyberry ( Callicarpa americana ) in Texas and Louisiana in 2016 since it was initially reported on crapemyrtles ( Lagerstroemia sp.) in Texas in 2004. The infestation of CMBS negatively impacted the flowering of crapemyrtles. We observed the infestation on the two most commercially available edible fig ( Ficus carica ) cultivars Beer’s Black and Chicago Hardy in a preliminary trial in 2018. To help estimate CMBS potential in aggravating risks to the ecosystem stability and the green industry, we conducted a host range and suitability test using ‘Bok Tower’ american beautyberry as a positive control with other eight beautyberry ( Callicarpa ) species [mexican beautyberry ( C. acuminata) , ‘Profusion’ bodinieri beautyberry ( C. bodinieri ), ‘Issai’ purple beautyberry ( C. dichotoma ), japanese beautyberry ( C. japonica var. luxurians ), ‘Alba’ white-fruited asian beautyberry ( C. longissima ), taiwan beautyberry ( C. pilosissima ), luanta beautyberry ( C. randaiensis ), and willow-leaf beautyberry ( C. salicifolia )] and three fig ( Ficus ) species [creeping fig ( F. pumila ), roxburgh fig ( F. auriculata ), and waipahu fig ( F. tikoua )] over 25 weeks. All the tested beautyberry species and waipahu fig sustainably supported the development and reproduction of nymphal CMBS and were confirmed as CMBS hosts. Furthermore, comparing with the control, mexican beautyberry, ‘Profusion’ bodinieri beautyberry, taiwan beautyberry, and willow-leaf beautyberry were significantly less suitable, while ‘Issai’ purple beautyberry, japanese beautyberry, ‘Alba’ white-fruited asian beautyberry, and luanta beautyberry were as suitable as ‘Bok Tower’ american beautyberry. Thus, when using beautyberries in landscapes, their different potential to host CMBS should be considered to minimize spreading CMBS through the native ecosystems.
Journal Article
Green Biosynthesis of Silver Nanoparticles Using Callicarpa maingayi Stem Bark Extraction
by
Abdolmohammadi, Sanaz
,
Ibrahim, Nor Azowa
,
Usman, Muhammad Sani
in
Biosynthesis
,
Callicarpa - chemistry
,
Catalysis
2012
Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
Journal Article
Undescribed Phyllocladane-Type Diterpenoids from Callicarpa giraldii Hesse ex Rehd. and Their Anti-Neuroinflammatory Activity
by
Gong, Qi
,
Ye, Yang
,
Liang, Xu
in
Animals
,
Anti-Inflammatory Agents - chemistry
,
Anti-Inflammatory Agents - isolation & purification
2025
Callicarpa giraldii Hesse ex Rehd. is an endemic plant in China and has long been used as a traditional medicine in several provinces. Although the plant has been reported to contain flavonoids, triterpenes, and alkaloids, this study represents the first report of the isolation of phyllocladane-type diterpenoids, a relatively rare class of compounds. In this study, 18 new phyllocladane-type diterpenoids (7–24) were isolated and structurally elucidated, including eight uncommon 3,4-seco phyllocladane-type diterpenoids (15–22) and two unusual phyllocladane-type diterpene dimers (23–24), along with six known analogues (1–6). Their structures were elucidated by a comprehensive analysis of 1D and 2D NMR, IR, and HRESIMS data. The absolute configurations were determined by single crystal X-ray diffraction experiments, DFT NMR calculations, and TDDFT ECD calculations. Based on the obtained and reported spectroscopic data, we refined a rule to distinguish phyllocladane-type diterpenoids from their diastereomeric ent-kaurane-type compounds. Additionally, the isolated compounds were evaluated for their in vitro anti-neuroinflammatory activity against lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells. Compounds 5, 10, 13, 18, 19, and 20 showed moderate inhibitory activity at the concentration of 20 μM, with compounds 5 and 13 markedly reducing the mRNA levels of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α at this concentration.
Journal Article
Nudifloside, a Secoiridoid Glucoside Derived from Callicarpa nudiflora, Inhibits Endothelial-to-Mesenchymal Transition and Angiogenesis in Endothelial Cells by Suppressing Ezrin Phosphorylation
2024
is a traditional folk medicine in China used for eliminating stasis to subdue swelling. Several compounds from
have been proved to show anti-inflammatory, haemostasis, hepatitis, and anti-proliferative effects. Tumor endothelial cells play crucial roles in tumor-induced angiogenesis. Recently, it was demonstrated that ECs may be the important source of cancer associated fibroblasts (CAFs) through endothelial to mesenchymal transition (EndoMT). In this study, we evaluated the effects of nudifloside (NDF), a secoiridoid glucoside from Callicarpa Nudiflora, on TGF-β1-induced EndoMT and VEGF-induced angiogenesis, and the underlying mechanisms were also involved. It was found that NDF significantly inhibited enhanced migration, invasion and F-actin assembly in endothelial cells (ECs) exposed in TGF-β1. NDF obviously reversed expression of several biomarkers associated with EndoMT and recovered the morphological characteristics of ECs and tube-like structure induced by TGF-β1. Furthermore, treatment of NDF resulted in a significant destruction of VEGF-induced angiogenesis
and ex vivo. Data from co-immunoprecipitation assay provided the evidence that Ezrin phosphorylation and the interaction with binding protein can be inhibited by NDF, which can be confirmed by data from Ezrin silencing assay. Collectively, the application of NDF inhibited TGF-β1-induced EndoMT and VEGF-induced angiogenesis in ECs by reducing Ezrin phosphorylation.
Journal Article
Phenylethanoid Glycosides From Callicarpa kwangtungensis Chun Attenuate TNF-α-Induced Cell Damage by Inhibiting NF-κB Pathway and Enhancing Nrf2 Pathway in A549 Cells
2021
Background: Acute lung injury (ALI) is a complicated and severe lung disease, which is often characterized by acute inflammation. Poliumoside (POL), acteoside (ACT) and forsythiaside B (FTB) are phenylethanoid glycosides (PGs) with strong antioxidant, anti-inflammatory, and anti-apoptotic properties, which are extracted from Callicarpa kwangtungensis Chun (CK). The aim of this study was to investigate the protective effects of POL, ACT, and FTB against TNF-α-induced damage using an ALI cell model and explore their potential mechanisms. Methods and Results: MTT method was used to measure cell viability. Flow cytometry was used for detecting the apoptosis rate. Reactive oxygen species (ROS) activity was determined using fluorescence microscope. The expression of mRNA in apoptosis-related genes (Caspase 3, Caspase 8, and Caspase 9) were tested by qPCR. The effects of POL, ACT, FTB on the activities of nuclear factor erythroid-2 related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB) and the expression of their downstream genes were assessed by western blotting and RT-PCR in A549 cells. In the current study, POL, ACT, and FTB dose-dependently attenuated TNF-α-induced IL-1β, IL-6 and IL-8 production, cell apoptosis, the expression of apoptosis-related genes (Caspase 3, Caspase 8, and Caspase 9) and ROS activity. POL, ACT, and FTB not only increased in the mRNA levels of antioxidative enzymes NADPH quinone oxidoreductase (NQO1), glutamate cysteine ligase catalytic subunit (GCLC), heme oxygenase (HO-1), but also decreased the mRNA levels of IL-1β, IL-6 and IL-8. Furthermore, they upregulated the expression of Keap1 and enhanced the activation of Nrf2, while decreased the expression of phosphor-IκBα ( p -IκBα) and nuclear p65. In addition, no significant changes were observed in anti-inflammatory and antioxidant effects of POL, ACT, FTB following Nrf2 and NF-κB p65 knockdown. Conclusion: Our study revealed that POL, ACT, and FTB alleviated oxidative damage and lung inflammation of TNF-α-induced ALI cell model through regulating the Nrf2 and NF-κB pathways.
Journal Article
Clerodane Diterpenoids from Callicarpa hypoleucophylla and Their Anti-Inflammatory Activity
2020
Plants of the genus Callicarpa are known to possess several medicinal effects. The constituents of the Taiwan endemic plant Callicarpa hypoleucophylla have never been studied. Therefore, C. hypoleucophylla was selected for our phytochemical investigation. Two new clerodane-type diterpenoids, named callihypolins A (1) and B (2), along with seven known compounds were isolated from the leaves and twigs of the Lamiaceae plant C. hypoleucophylla and then characterized. The structures of compounds 1 and 2 were elucidated by spectroscopic data analysis, specifically, two-dimension nuclear magnetic resonance (NMR). The anti-inflammatory activity of compounds 1–9 based on the suppression of superoxide anion generation and elastase release was evaluated. Among the isolates, compounds 2–4 showed anti-inflammatory activity (9.52−32.48% inhibition at the concentration 10 μm) by suppressing superoxide anion generation and elastase release. Our findings not only expand the description of the structural diversity of the compounds present in plants of the genus Callicarpa but also highlight the possibility of developing anti-inflammatory agents from Callicarpa endemic species.
Journal Article
The Complete Mitochondrial Genome of Callicarpa americana L. Reveals the Structural Evolution and Size Differences in Lamiaceae
2025
L. is a member of the Lamiaceae family with important ornamental and medicinal value. Although the chloroplast genome of Lamiaceae has been extensively studied, its mitochondrial genome remains unreported, limiting a comprehensive understanding of the phylogeny and genome evolution of Lamiaceae. In this study, the complete mitochondrial genome of
was successfully assembled for the first time. The genome is 499,565 bp in length, showing a complex multi-branched closed-loop structure that contains 37 protein-coding genes, 23 tRNA genes, and 4 rRNA genes. The difference in mitochondrial genome size is relatively large compared to Orobanchaceae species, but the difference in GC content is not obvious. The expansion of genome size was mainly due to the accumulation of non-coding regions and repetitive sequences. Meanwhile, two pairs of long repetitive sequences (LR3 and LR5) mediated homologous recombination. The mitogenome was also identified; there were a total of 494 C-to-U RNA editing sites in protein-coding genes. In addition, 42 mitochondrial plastid DNA fragments (MTPTs) were detected, with a total length of 21,464 bp, accounting for 4.30% of the genome. Repeat sequence analysis showed that tetranucleotide SSR was the most abundant repeat type in the mitochondria of Lamiaceae. Phylogenetic analysis based on the alignment of 32 protein-coding gene sequences showed that
is sister to the other eight species of Lamiaceae. This work fills an important gap by presenting the first complete mitochondrial genome of
, providing an important data resource for further understanding the structural evolution, dynamic recombination mechanism, and phylogeny of the mitochondrial genome of Lamiaceae.
Journal Article
Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants
by
Nguyen Huy Hung
,
Do Ngoc Dai
,
Le Thi Huong
in
Acetylcholinesterase
,
Alzheimer Disease
,
Alzheimer's disease
2022
Essential oils are promising as environmentally friendly and safe sources of pesticides for human use. Furthermore, they are also of interest as aromatherapeutic agents in the treatment of Alzheimer’s disease, and inhibition of the enzyme acetylcholinesterase (AChE) has been evaluated as an important mechanism. The essential oils of some species in the genera Callicarpa, Premna, Vitex and Karomia of the family Lamiaceae were evaluated for inhibition of electric eel AChE using the Ellman method. The essential oils of Callicarpa candicans showed promising activity, with IC50 values between 45.67 and 58.38 μg/mL. The essential oils of Callicarpa sinuata, Callicarpa petelotii, Callicarpa nudiflora, Callicarpa erioclona and Vitex ajugifolia showed good activity with IC50 values between 28.71 and 54.69 μg/mL. The essential oils Vitex trifolia subsp. trifolia and Callicarpa rubella showed modest activity, with IC50 values of 81.34 and 89.38, respectively. trans-Carveol showed an IC50 value of 102.88 µg/mL. Molecular docking and molecular dynamics simulation were performed on the major components of the studied essential oils to investigate the possible mechanisms of action of potential inhibitors. The results obtained suggest that these essential oils may be used to control mosquito vectors that transmit pathogenic viruses or to support the treatment of Alzheimer’s disease.
Journal Article
The complete chloroplast genome of Callicarpa macrophylla Vahl
by
Wu, Wuwei
,
Liu, Yu
,
Bei, Jinlong
in
Callicarpa
,
Callicarpa macrophylla Vahl
,
Chloroplast genome
2022
Callicarpa macrophylla Vahl. belongs to the family Lamiaceae. Its root is a widely used Yao Medicine (YM) to treat internal and external bleeding at the Yao minority areas in southern China. Here, we provide the complete chloroplast genome of C. macrophylla which was collected from Laibin city in Guangxi, China. The total length of the chloroplast genome is 154,141 bp, including a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats (IRs) regions which are separated by the LSC and SSC, with lengths of 84,904 bp, 17,839 bp, and 25,699 bp, respectively. One hundred and thirty-one genes were identified, including 89 protein-coding genes, 34 tRNA genes, and eight rRNA genes. The overall GC content is 38%. Phylogenetic analysis revealed that C. macrophylla is closely related to C. integerrima var. chinensis.
Journal Article