Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,410 result(s) for "Calyx"
Sort by:
What should the optimal access site be for percutaneous treatment of anterior lower pole calyx stones?
Objectives Compared to other stone groups, anterior calyx stones are more challenging for endourologists to treat. This study aims to evaluate the differences between our latest technique and conventional techniques for treating anterior calyx stones in the lower pole. Materials and methods Patients with isolated anterior lower pole calyx or complex lower pole stones with anterior calyx branching were included in the study. The first group included lower pole access, while the second group included percutaneous treatment through the middle or upper pole. In the first group, the posterior calyx or direct anterior calyx approach was utilised depending on whether the stone was isolated calyx, complex structure or calyx anatomy, while in the second group, percutaneous nephrolithotomy was performed through the middle or upper pole posterior calyx access. Results There were 37 patients in Group 1 and 25 patients in Group 2. Both groups were similar regarding patient age, sex, stone burden, and stone localisation ( p  > 0.05). When comparing operative and post-operative data between groups, it was found that the stone clearance rate, number of accesses, and haematocrit decrease were statistically superior in the second group ( p : 0.003, p : 0.002, p : 0.018), with no significant difference in mean operative time, length of hospital stay, fluoroscopy time and pain score ( p  > 0.05). Conclusions Percutaneous surgery utilising an access from a calyx distal to the stone may offer better clearance and lower morbidity rates for lower pole stones involving the anterior calyx.
Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide
Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm‐1, Tm‐2, and Tm‐22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV‐resistant tomato cultivars are available. Integrated pest management‐based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long‐term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment‐friendly strategy for pathogen control. Taxonomy Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. Genome and virion The ToBRFV genome is a single‐stranded, positive‐sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod‐shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. Disease symptoms Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits. This pathogen profile summarizes current knowledge about ToBRFV, highlights recent research progress, discusses future research directions, and proposes short‐run and long‐term control strategies.
Physalis alkekengi L. Calyx Extract Alleviates Glycolipid Metabolic Disturbance and Inflammation by Modulating Gut Microbiota, Fecal Metabolites, and Glycolipid Metabolism Gene Expression in Obese Mice
Physalis alkekengi L. calyx (PC) extract can relieve insulin resistance and has glycemic and anti-inflammatory effects; however, the potential mechanisms related to gut microbiota and metabolites remain elusive. This study aimed to understand how PC regulates gut microbiota and metabolites to exert anti-obesogenic effects and relieve insulin resistance. In this study, a high-fat high-fructose (HFHF)-diet-induced obesity C57BL/6J male mice model with glycolipid metabolism dysfunction was established, which was supplemented with the aqueous extract of PC daily for 10 weeks. The results showed that the PC supplementation could effectively cure the abnormal lipid metabolism and maintain glucose metabolism homeostasis by regulating the expression of adipose metabolic genes and glucose metabolism genes in the liver, thereby effectively alleviating the inflammatory response. PC treatment also increased the contents of fecal short-chain fatty acids (SCFAs), especially butyric acid. PC extract could restore the HFHF-disrupted diversity of gut microbiota by significantly increasing the relative abundance of Lactobacillus and decreasing those of Romboutsia, Candidatus_Saccharimonas, and Clostridium_sensu_stricto_1. The negative effects of the HFHF diet were ameliorated by PC by regulating multiple metabolic pathways, such as lipid metabolism (linoleic acid metabolism, alpha-linolenic acid metabolism, and sphingolipid metabolism) and amino acid metabolism (histidine and tryptophan metabolism). Correlation analysis showed that among the obesity parameters, gut microbiota and metabolites are directly and closely related. To sum up, this study suggested that PC treatment exhibited therapeutic effects by regulating the gut microbiota, fecal metabolites, and gene expression in the liver to improve glucose metabolism, modulate adiposity, and reduce inflammation.
Parasitoid Calyx Fluid and Venom Affect Bacterial Communities in Their Lepidopteran Host Labial Salivary Glands
The influence of gut and gonad bacterial communities on insect physiology, behaviour, and ecology is increasingly recognised. Parasitism by parasitoid wasps alters many physiological processes in their hosts, including gut bacterial communities. However, it remains unclear whether these changes are restricted to the gut or also occur in other tissues and fluids, and the mechanisms underlying such changes are unknown. We hypothesise that host microbiome changes result from the injection of calyx fluid (that contain symbiotic viruses known as polydnaviruses) and venom during parasitoid oviposition and that these effects vary by host tissue. To test this, we microinjected Pieris brassicae caterpillars with calyx fluid and venom from Cotesia glomerata , using saline solution and natural parasitism by C. glomerata as controls. We analysed changes in the bacterial community composition in the gut, regurgitate, haemolymph, and labial salivary glands of the host insects. Multivariate analysis revealed distinct bacterial communities across tissues and fluids, with high diversity in the salivary glands and haemolymph. Parasitism and injection of calyx fluid and venom significantly altered bacterial communities in the salivary glands. Differential abundance analysis showed that parasitism affected bacterial relative abundance in the haemolymph, and that Wolbachia was only found in the haemolymph of parasitized caterpillars. Altogether, our findings reveal that parasitism influences the host haemolymph microbiome, and both parasitism and injection of calyx fluid and venom drive changes in the bacterial community composition within the host salivary glands. Given that the composition of salivary glands can influence plant response to herbivory, we discuss these results in the broader context of plant-parasitoid interactions.
Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel
Severe outbreaks of Alternaria leaf blotch and fruit spot were recently observed in cv. Pink Lady apples in northern Israel, especially on fruit. Such severe outbreaks have not been reported from other countries. Symptoms involved cracks and rot around the calyx and external rot of the fruit body. Up to 80 % of the fruit in some orchards were affected by the disease. Microscopic examinations, fulfillment of Koch’s postulates and molecular (genetic) analyses confirmed the causal agent as Alternaria alternata f. sp. mali . The incidence of Alternaria increased as the degree of calyx cracking increased, or if fruit were both cracked and rotted. Injecting spore suspensions into the fruit produced typical rot symptoms. Injection assays of detached fruit of eight apple cultivars showed that cvs. Pink Lady and Golden Delicious were susceptible whereas cv. Jonathan was resistant. Pink Lady and Golden Delicious produced more fruit rot as the inoculum concentration increased. Rot in all three cultivars was moderate close to the skin but more severe close to the seed locule. Aqueous extracts taken from Jonathan fruit peel inhibited germ tube elongation of A. alternata f. sp. mali in vitro. This is the first report on heavy infection of Pink Lady fruit in Israel caused by A. alternata f. sp. mali .
A sequential two-step priming scheme reproduces diversity in synaptic strength and short-term plasticity
Glutamatergic synapses display variable strength and diverse short-term plasticity (STP), even for a given type of connection. Using nonnegative tensor factorization and conventional state modeling, we demonstrate that a kinetic scheme consisting of two sequential and reversible steps of release–machinery assembly and a final step of synaptic vesicle (SV) fusion reproduces STP and its diversity among synapses. Analyzing transmission at the calyx of Held synapses reveals that differences in synaptic strength and STP are not primarily caused by variable fusion probability (pfusion ) but are determined by the fraction of docked synaptic vesicles equipped with a mature release machinery. Our simulations show that traditional quantal analysis methods do not necessarily report pfusion of SVs with a mature release machinery but reflect both pfusion and the distribution between mature and immature priming states at rest. Thus, the approach holds promise for a better mechanistic dissection of the roles of presynaptic proteins in the sequence of SV docking, two-step priming, and fusion. It suggests a mechanism for activity-induced redistribution of synaptic efficacy.
Plant Growth Inhibitory Activity of Hibiscus sabdariffa Calyx and the Phytotoxicity of Hydroxycitric Acid Lactone
Weeds pose major constraints in crop production. The use of allelochemicals and allelopathic species can provide an effective alternative for sustainable weed management. In a previous study that evaluated the allelopathic activity of wild and cultivated plants in Turkey, Hibiscus sabdariffa demonstrated the strongest inhibitory potential. This study aimed to estimate the phytotoxic influence of the H. sabdariffa water crude extracts on Lactuca sativa L. in a bioassay experiment. High-performance liquid chromatography (HPLC) analysis was used to identify two major compounds, hydroxycitric acid lactone and hydroxy citric acid, and their plant growth inhibitory activities were evaluated by bioassays. Hydroxycitric acid lactone had a stronger growth inhibitory activity on L. sativa L. and was estimated as a major allelochemical in H. sabdariffa calyx. The high concentration (16.7% of the dry weight of the calyx) and strong inhibitory effect (EC50, 73.7 ppm) of the hydroxycitric acid lactone could demonstrate the growth inhibitory activity of the H. sabdariffa calyx extract. This study showed that hydroxycitric acid lactone, a major compound in the calyx of Hibiscus sabdariffa, is a plant growth inhibitor.
Safety and efficacy of superior calyceal access versus inferior calyceal access for pelvic and/or lower calyceal renal calculi- a prospective observational comparative study
ObjectiveTo compare efficacy and safety between superior calyceal access and inferior calyceal access for pelvic and/or lower calyceal renal stones.MethodsConsecutive patients presenting with Pelvic and/or inferior calyceal renal calculi were allocated to the superior calyceal access (group 1) or inferior calyceal access (group 2) treatment arm. Allocation of treatment access was based on the surgeon’s preference. Variables studied included stone free rate, operating time, intraoperative and postoperative complications. Statistical analysis was executed using SPSS, Version 16.0. The statistical significance was evaluated at 5% level of significance (p value < 0.05).ResultsBetween July 2018 and February 2019, 63 patients were included in each group. The percutaneous inserted guidewire entered the ureter in 92% in group1 and 74.6% in group 2 (p = 0.034). Stone fragments migrated to the middle calyx in 3.2% in group1 and 9.5% in group 2 (p = 0.033). A second puncture was required in one patient in group 1 and in 5 patients in group 2 (p = 0.04). The operative duration (minutes) was 13.46 ± 1.09 in the group 1 while 16.58 ± 1.44 in the group 2 (p = 0.002). Thoracic complications (hydropneumothorax) occurred to 2 patients in superior calyceal access group managed with intercostal tube drainage (p = 0.243).Post operatively blood transfusion was required in two patients in group 2 (p = 0.169). Angioembolization was done in one patient among the inferior calyceal access approach (p = 0.683). Complete stone clearance assessed at 3 months was 96.8% in group 1 and 85.7% in group 2 (p = 0.046).ConclusionsSuperior calyceal access is a safe and most efficacious in terms of achieving complete stone clearance rate with reduced operative time, minimal blood loss, less need for a second puncture and auxiliary procedures at minimal complications.Study registrationClinical trials registry – INDIA; CTRI/2018/07/014,687.
small pool of vesicles maintains synaptic activity in vivo
Chemical synapses contain substantial numbers of neurotransmitter-filled synaptic vesicles, ranging from approximately 100 to many thousands. The vesicles fuse with the plasma membrane to release neurotransmitter and are subsequently reformed and recycled. Stimulation of synapses in vitro generally causes the majority of the synaptic vesicles to release neurotransmitter, leading to the assumption that synapses contain numerous vesicles to sustain transmission during high activity. We tested this assumption by an approach we termed cellular ethology, monitoring vesicle function in behaving animals (10 animal models, nematodes to mammals). Using FM dye photooxidation, pHluorin imaging, and HRP uptake we found that only approximately 1–5% of the vesicles recycled over several hours, in both CNS synapses and neuromuscular junctions. These vesicles recycle repeatedly, intermixing slowly (over hours) with the reserve vesicles. The latter can eventually release when recycling is inhibited in vivo but do not seem to participate under normal activity. Vesicle recycling increased only to ≈5% in animals subjected to an extreme stress situation (frog predation on locusts). Synapsin, a molecule binding both vesicles and the cytoskeleton, may be a marker for the reserve vesicles: the proportion of vesicles recycling in vivo increased to 30% in synapsin-null DROSOPHILA: We conclude that synapses do not require numerous reserve vesicles to sustain neurotransmitter release and thus may use them for other purposes, examined in the accompanying paper.
Superpriming of synaptic vesicles after their recruitment to the readily releasable pool
Recruitment of release-competent vesicles during sustained synaptic activity is one of the major factors governing short-term plasticity. During bursts of synaptic activity, vesicles are recruited to a fast-releasing pool from a reluctant vesicle pool through an actin-dependent mechanism. We now show that newly recruited vesicles in the fast-releasing pool do not respond at full speed to a strong Ca ²⁺ stimulus, but require approximately 4 s to mature to a “superprimed” state. Superpriming was found to be altered by agents that modulate the function of unc13 homolog proteins (Munc13s), but not by calmodulin inhibitors or actin-disrupting agents. These findings indicate that recruitment and superpriming of vesicles are regulated by separate mechanisms, which require integrity of the cytoskeleton and activation of Munc13s, respectively. We propose that refilling of the fast-releasing vesicle pool proceeds in two steps, rapid actin-dependent “positional priming,” which brings vesicles closer to Ca ²⁺ sources, followed by slower superpriming, which enhances the Ca ²⁺ sensitivity of primed vesicles.