Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Cambial age"
Sort by:
Resin tapping influence on maritime pine growth depends on tree age and stand characteristics
Resin is a renewable forest resource that can increase the economic value of some forests in rural areas. Resin production is associated with climatic conditions. However, its impact on trees’ growth remains unclear. Here, we studied radial growth in six Portuguese Pinus pinaster forests that had been resin tapped for 5–7 years along a latitudinal and climatic gradient to understand whether resin tapping affects tree growth, and how it is affected by climate, stand and tree traits. Tree-ring width (TRW) on tapped and untapped trunk sides was compared before and during the tapping period. Tree-ring width decreased in the three youngest populations (< 30 years), with no changes in older populations (> 40 years), while TRW increased after resin harvesting began in the oldest stand (> 55 years). Annual resin-tapping impact (RTI), calculated as the ratio between TRW during tapping years and the 5-year average TRW before tapping, was below and above 1 in the younger and older stands, respectively. Among stand characteristics and across sites, RTI was negatively correlated with tree competition and positively correlated with TRW, cambial age, and tree height. Climatic conditions had a minor role on tree growth response to resin tapping. Our main conclusion is that the effect of resin extraction on growth is age-dependent. Our results encourage the co-production of resin and wood on maritime pine stands over 40 years old where resin extraction impact on growth is negligible.
Cross-generational genomic prediction of Norway spruce (Picea abies) wood properties: an evaluation using independent validation
Background The evaluation of genomic selection (GS) efficiency in forestry has primarily relied on cross-validation schemes that split the same population within a single generation for both training and validation. While useful, this approach may not be reliable for multigenerational breeding. To our knowledge, this is the first study to assess genomic prediction in Norway spruce using a large dataset spanning two generations in two environments. We trained pedigree-based (ABLUP) and marker-based (GBLUP) prediction models under three approaches: forward prediction, backward prediction, and across-environment prediction. The models were evaluated for ring-width, solid-wood and tracheid characteristics, using ~ 6,000 phenotyped and ~ 2,500 genotyped individual. Predictive ability (PA) and prediction accuracy (ACC) were estimated using an independent validation method, ensuring no individuals were shared between training and validation datasets. To assess the trade-off between comprehensive radial history and practical direct methods, we compared GBLUP models trained with cumulative area-weighted density (AWE-GBLUP) and single annual-ring density (SAD-GBLUP) from mother plus-trees. These models were validated using early and mature-stage progeny density measurements across two trials. Results Despite the smaller number of individuals used in the GBLUP models, both PA and ACC were generally comparable to those of the ABLUP model, particularly for cross-environment predictions. Overall, forward and backward predictions were significantly higher for density-related and tracheid properties, suggesting that across-generation predictions are feasible for wood properties but may be challenging for growth and low-heritability traits. Notably, SAD-GBLUP provided comparable prediction accuracies to AWE-GBLUP, supporting the use of more practical and cost-effective phenotyping methods in operational breeding programs. Conclusions Our findings highlight the need for context-specific models to improve the accuracy and reliability of genomic prediction in forest tree breeding. Future efforts might aim to expand training populations, incorporate non-additive genetic effects, and validate model performance across cambial ages while accounting for climatic variability during the corresponding growth years. Overall, this study offers a valuable foundation for implementing GS in Norway spruce breeding programs.
Phenotyping a Pinus radiata breeding population for resin canal traits
Resin defects can substantially decrease timber value in Pinus radiata , a commercial forest plantation species known for its good machinability. Tree breeding is a common approach to improve economic viability and product quality in commercial forestry. This study evaluated resin canal features in a P. radiata breeding population at two sites. Phenotypic resin canal features close to the pith differed significantly between the sites. The study estimated heritabilities for resin canal size, area, and density in 2-year-old trees as h 2  = 0.25, 0.42 and 0.23, respectively. The corresponding coefficients of genetic variations were 7.7%, 22.6% and 15.2%. Furthermore, resin canal features were assessed along radial cores of 6-year-old trees. Resin canal size increased with cambial age, while resin canal density and area showed minima 4 cm from the pith. Radial changes were accompanied with increased variation between families. While heritability and genetic variation would allow for selection at age 2-year-old, increased variation further from the pith could allow more accurate selections when trees are older. Genetic correlations between resin canal traits indicate that genotypes with larger resin canals tended to have fewer canals, larger trees having bigger but fewer resin canals and stiffer trees having less resin canal area.
A method for estimating tree ring density by coupling CT scanning and ring width measurements: application to the analysis of the ring width–ring density relationship in Picea abies trees
Key MessageThe original method proposed provides useful data for the analysis of ring density variations in stems, highlighting the particular behaviour observed at the base of the tree.Tree growth in volume and wood density are the two factors that determine tree biomass. They are important for assessing wood quality and resource availability. Analysing and modelling the relationships between these two factors are important for improving silvicultural practices of softwoods like Norway spruce, for which a negative relationship is generally observed between ring width and ring density. We describe an original method for obtaining ring density data (RD) by coupling conventional ring width measurements (RW) and air-dry density measurements obtained with X-ray computer tomography at high-speed but with lower resolution than the RW data. The method was applied to 200 discs of Norway spruce trees sampled in a plantation to assess its relevance. The RW–RD relationship was analysed as a function of cambial age and disc height in the stem. Descriptive statistical models were developed and compared to models in the literature. These models made it possible to analyse the variations of RD as a function of height in the tree at a given cambial age or for a given calendar year and also to observe a shift in the juvenile wood–mature wood boundary between the bottom of the tree and the rest of the stem. The RD– RW relationship was observed in the juvenile wood at the base of the stem but not in the juvenile wood higher up. Furthermore, the juvenile wood formed at the base of the tree was denser than the juvenile wood formed higher up and the mature wood formed at the same height. In conclusion, the proposed method was found to be relevant, especially when wood discs are readily available, and the results obtained highlighted the importance of distinguishing juvenile wood formed at the base of the tree from that formed higher up.
Identification and Expression Profile of CLE41/44-PXY-WOX Genes in Adult Trees Pinus sylvestris L. Trunk Tissues during Cambial Activity
WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cells in the cambium, the lateral meristem that forms all the wood structural elements. Most studies have examined the function of these genes in angiosperms, and very little was known about coniferous trees. Pine is one of the most critical forest-forming conifers globally, and in this research, we studied the distribution of WOX4, WOX13, and WOXG genes expression in Pinus sylvestris L. trunk tissues. Further, we considered the role of TDIF(CLE41/44)/TDR(PXY) signaling in regulating Scots pine cambial activity. The distribution of CLE41/44-PXY-WOXs gene expression in Scots pine trunk tissues was studied: (1) depending on the stage of ontogenesis (the first group of objects); and (2) depending on the stage of cambial growth (the second group of objects). The first group of objects is lingonberry pine forests of different ages (30-, 80-, and 180-year-old stands) in the middle taiga subzone. At the time of selection, all the trees of the studied groups were at the same seasonal stage of development: the formation of late phloem and early xylem was occurring in the trunk. The second group of objects is 40-year-old pine trees that were selected growing in the forest seed orchard. We took the trunk tissue samples on 27 May 2022, 21 June 2022, and 21 July 2022. We have indicated the spatial separation expressed of PsCLE41/44 and PsPXY in pine trunk tissues. PsCLE41/44 was differentially expressed in Fraction 1, including phloem cells and cambial zone. Maximum expression of the PsPXY gene occurred in Fraction 2, including differentiating xylem cells. The maximum expression of the PsCLE41/44 gene occurred on 27 May, when the number of cells in the cambial zone was the highest, and then it decreased to almost zero. The PsPXY gene transcript level increased from May to the end of July. We found that the highest transcript level of the PsWOX4 gene was during the period of active cell proliferation in the cambial zone, and also in the trees with the cambial age 63 years, which were characterized by the largest number of cell layers in the cambial zone. In this study, we have examined the expression profiles of genes belonging to the ancient clade (PsWOXG and PsWOX13) in stem tissues in Scots pine for the first time. We found that, in contrast to PsWOX4 (high expression that was observed during the period of active formation of early tracheids), the expression of genes of the ancient clade of the WOX genes was observed during the period of decreased cambial activity in the second half of the growing season. We found that PsWOX13 expression was shifted to Fraction 1 in most cases and increased from the phloem side, while PsWOXG expression was not clearly bound to a certain fraction. Based on the data, the role of the CLE41/44-PXY-WOX signaling module in regulating P. sylvestris cambial growth is discussed.
Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica
Differences in the timing of cambial reactivation and the initiation of xylem differentiation in response to the sum of daily maximum temperatures were studied in two Cryptomeria japonica trees with cambium of different ages under natural and locally heated conditions. In addition, we observed the effects of low temperature on cambial activity. The timing of cambial reactivation and of the initiation of xylem differentiation differed between 55- and 80-year-old cambium under natural conditions. In the 55-year-old cambium, cambial reactivation occurred when the cambial reactivation index (CRI), calculated on the basis of daily maximum temperatures in excess of 10°C, was 94 and 97°C in 2007 and 2008, respectively. In 80-year-old cambium, cambial reactivation occurred when the CRI, calculated on the basis of daily maximum temperatures in excess of 11°C, was 69 and 71°C in 2007 and 2008, respectively. After cambial reactivation in 2007, normal cell division was evident in the cambium even though the minimum temperature had fallen between −2 and −3°C. Under natural conditions, xylem differentiation started 38-44 days after cambial reactivation. In heated stems, the time between cambial reactivation and the initiation of xylem differentiation ranged from 14 to 16 days, a much shorter time than under natural conditions, indicating that continuous exposure to an elevated temperature had induced earlier xylem differentiation. Our observations indicate that the sensitivity to reactivation inducing stimuli of the cambium depends on both the stage of dormancy and tree age of the cambium.
Investigating Masking Effects of Age Trends on the Correlations among Tree Ring Proxies
Age-related trends are present in tree-ring widths (TRW), but their presence in tree rings isotope is debated. It is unclear how cambial age influences the relationships between TRW and isotopes. Tree-ring isotopes of alpine larch and cembran-pine trees showed only trends in the juvenile period (>100 years), which might mask the inter-relations between tree-ring proxies during cambial age. This work tries to unmask the age-trend influences by examining the correlations in TRW—stable isotopes with and without age-trend correction. The non-detrended and linear-detrended values of TRW, of δD and δ18O showed significant correlations for ages up to 100 years, but not afterward. However, the correlation values, after spline or first-difference time-series detrending, were not age-related. Thus, detrending methods affect the correlations in the juvenile phase and may affect climate-related interpretations. The correlations between TRW and δ13C were not age-related, while those among the isotopes were significant throughout the ages. The correlation between δ13C and δD was the exception, as it became significant only after age > 100 years, suggesting a different use of reserves in the juvenile phase. In conclusion, the relationships among the tree-ring parameters are stable in all the different detrend scenarios after the juvenile phase, and they can be used together in multi-proxy paleoclimatic studies. The data of the juvenile phase can be used after spline-detrending or first-difference time-series calculation, depending on the purpose of the analysis to remove age-related trends. The work also provides clues on the possible causes of juvenile age trends.
Cambial Age Influences PCD Gene Expression during Xylem Development and Heartwood Formation
Heartwood formation is an important ontogenetic stage in Scots pine (Pinus sylvestris L.). The amount of heartwood determines the proportion of functionally active sapwood in the total trunk biomass as well as the quality of wood. The key criterion for heartwood formation is the death of xylem ray parenchyma cells. Previously, models that described the patterns of heartwood formation, depending on the cambial age, were derived from Scots pine trees of different ages. The cambial age is the number of annual xylem layers at the core sampling site at a certain trunk height. We studied the features of the occurrence of programmed cell death (PCD) processes during the xylem differentiation and heartwood formation of 80-year-old Scots pine trees, depending on the cambial age, under the lingonberry pine forest conditions in the transition area of the northern taiga subzone and tundra. We have shown that the distance from the cambial zone to the heartwood boundary does not change significantly with stem height. As the cambial age increases, the lifespan of the formed xylem ray parenchyma cells increases and the activity of PCD genes decreases during the formation of both (1) xylem (in the outer layers of sapwood) and (2) heartwood (in the inner layers of sapwood and transition zone). We hypothesized that the decisive factor in the PCD initiation during heartwood formation is the distance of the xylem ray parenchyma cells from the cambial zone. The younger cambium forms wider annual increments, and therefore the xylem ray parenchyma cells in these parts of the trunk reach the distance from the cambial zone earlier, which is necessary for PCD initiation.
Evaluation of Environmental Impact on Selected Properties of Lime (Tilia Cordata Mill.) Wood
The external and internal factors in the tree development process affect wooden structures and properties. They depend on, for example, a plant species, its age, part and growth conditions. The present study investigated the chemical structure and physical properties of the common urban tree species: small-leaved lime (Tilia cordata Mill.). The properties of trees growing in an urban agglomeration, by a roadside and in a forest, i.e., areas varying in degrees of an environmental stress impact, were compared. Tree-ring width and density, selected hygroscopic properties (sorption hysteresis and isotherms), wood chemical content (percentage content of: holocellulose, cellulose, pentosanes, lignin and substances soluble in 1% NaOH and EtOH) as well as the content of selected chemical elements (Fe, Zn, Cu, Pb, Cd, K, Na, Mg and Ca) were studied. The analysis of the case shows no impact of the environmental stress on the growth patterns characterized by ring width index (RWI). Two-factor analysis of variance (ANOVA) revealed impact significance of growth environment and cambial age on the content of each of the investigated components and chemical elements. There was a relationship demonstrated that for a tree growing in an agglomeration with the highest environmental stress the content of cellulose and lignin was the lowest, whereas the content of substances soluble in NaOH and EtOH was the highest. For mature wood growing under the same conditions, the results corresponded to the highest Zn, Cu, K, Na, Mg and Ca content. It was also shown that the environmental stress affected hygroscopicity which was the consequence of chemical component percentage content. The research proved that Tilia cordata Mill. responded to environmental stress with alternations in its chemical or/and physical properties.
Mean Annual Wood Density Variations of Larix gmelinii (Rupr.), Quercus mongolica Fisch. ex Ledeb., and Pinus tabulaeformis Carr. at Two Different Stem Heights
Forests are a large carbon sink with an additional substitution effect in the merchantable timber compartment of harvested trees, where carbon stored within the same volume of wood varies depending on wood density. Here, we investigated mean annual air-dry wood density variations depending on cambial age, annual radial increment, and two different stem heights of Larix gmelinii (Rupr.), Quercus mongolica Fisch. ex. Ledeb., and Pinus tabulaeformis Carr. from a first climatic region (Mulan Forest) and exclusively of P. tabulaeformis from a second climatic region (Zhongtiaoshan Forest) in the temperate zone of China. We applied linear mixed-effects models with partly transformed variables and estimated marginal means for pairwise comparisons. Results showed that mean wood density was not significantly different between L. gmelinii (0.626 g cm−3) and Q. mongolica (0.596 g cm−3), but significantly different between P. tabulaeformis from the two different climatic regions (0.445 g cm−3 in Mulan Forest and 0.521 g cm−3 in Zhongtiaoshan Forest). Mean annual wood density within trees except for P. tabulaeformis from Mulan Forest was initially increasing until an intermediate cambial age, after which it decreased again to lower values. These findings showed that tree age had to be considered in assessing carbon sequestration in wood. It also could play an important role in decision making for forest management in Mulan Forest and show the benefit of the wood properties and carbon storage potential of the faster growing L. gmelinii compared to Q. mongolica. Furthermore, these findings gave an indication that intermediate old forest stands for some tree species accumulated more carbon per year within their woody biomass than young stands or old growth forests. Our results may have an impact on the planning of rotation lengths and of tree species composition for forest stands in Mulan Forest and Zhongtiaoshan Forest.