Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,144
result(s) for
"Cancellous Bone - growth "
Sort by:
Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts
2020
Chondrocytes proliferate and mature into hypertrophic chondrocytes. Vascular invasion into the cartilage occurs in the terminal hypertrophic chondrocyte layer, and terminal hypertrophic chondrocytes die by apoptosis or transdifferentiate into osteoblasts. Runx2 is essential for osteoblast differentiation and chondrocyte maturation. Runx2 -deficient mice are composed of cartilaginous skeletons and lack the vascular invasion into the cartilage. However, the requirement of Runx2 in the vascular invasion into the cartilage, mechanism of chondrocyte transdifferentiation to osteoblasts, and its significance in bone development remain to be elucidated. To investigate these points, we generated Runx2 fl/flCre mice, in which Runx2 was deleted in hypertrophic chondrocytes using Col10a1 Cre. Vascular invasion into the cartilage was similarly observed in Runx2 fl/fl and Runx2 fl/flCre mice. Vegfa expression was reduced in the terminal hypertrophic chondrocytes in Runx2 fl/flCre mice, but Vegfa was strongly expressed in osteoblasts in the bone collar, suggesting that Vegfa expression in bone collar osteoblasts is sufficient for vascular invasion into the cartilage. The apoptosis of terminal hypertrophic chondrocytes was increased and their transdifferentiation was interrupted in Runx2 fl/flCre mice, leading to lack of primary spongiosa and osteoblasts in the region at E16.5. The osteoblasts appeared in this region at E17.5 in the absence of transdifferentiation, and the number of osteoblasts and the formation of primary spongiosa, but not secondary spongiosa, reached to levels similar those in Runx2 fl/fl mice at birth. The bone structure and volume and all bone histomophometric parameters were similar between Runx2 fl/fl and Runx2 fl/flCre mice after 6 weeks of age. These findings indicate that Runx2 expression in terminal hypertrophic chondrocytes is not required for vascular invasion into the cartilage, but is for their survival and transdifferentiation into osteoblasts, and that the transdifferentiation is necessary for trabecular bone formation in embryonic and neonatal stages, but not for acquiring normal bone structure and volume in young and adult mice.
Journal Article
Age‐dependent alterations in osteoblast and osteoclast activity in human cancellous bone
by
Döbele, Carmen
,
Abraham, Stephanie
,
Becerikli, Mustafa
in
Acid phosphatase (tartrate-resistant)
,
Adolescent
,
Adult
2017
It is assumed that the activity of osteoblasts and osteoclasts is decreased in bone tissue of aged individuals. However, detailed investigation of the molecular signature of human bone from young compared to aged individuals confirming this assumption is lacking. In this study, quantitative expression analysis of genes related to osteogenesis and osteoclastogenesis of human cancellous bone derived from the distal radius of young and aged individuals was performed. Furthermore, we additionally performed immunohistochemical stainings. The young group included 24 individuals with an average age of 23.2 years, which was compared to cancellous bone derived from 11 body donators with an average age of 81.0 years. In cancellous bone of young individuals, the osteogenesis‐related genes RUNX‐2, OSTERIX, OSTEOPONTIN and OSTEOCALCIN were significantly up‐regulated compared to aged individuals. In addition, RANKL and NFATc1, both markers for osteoclastogenesis, were significantly induced in cancellous bone of young individuals, as well as the WNT gene family member WNT5a and the matrix metalloproteinases MMP‐9. However, quantitative RT‐PCR analysis of BMP‐2, ALP, FGF‐2, CYCLIN‐D1, MMP‐13, RANK, OSTEOPROTEGERIN and TGFb1 revealed no significant difference. Furthermore, Tartrate‐resistant acid phosphatase (TRAP) staining was performed which indicated an increased osteoclast activity in cancellous bone of young individuals. In addition, pentachrome stainings revealed significantly less mineralized bone matrix, more osteoid and an increased bone density in young individuals. In summary, markers related to osteogenesis as well as osteoclastogenesis were significantly decreased in the aged individuals. Thus, the present data extends the knowledge about reduced bone regeneration and healing capacity observed in aged individuals.
Journal Article
The ontogeny of human fetal trabecular bone architecture occurs in a limb-specific manner
by
Abel, Richard Leslie
,
Suh, Sarah Holly
,
Wiles, Crispin Charles
in
631/136/818
,
692/698/1671/63
,
Anisotropy
2024
Gestational growth and development of bone is an understudied process compared to soft tissues and has implications for lifelong health. This study investigated growth and development of human fetal limb bone trabecular architecture using 3D digital histomorphometry of microcomputed tomography data from the femora and humeri of 35 skeletons (17 female and 18 male) with gestational ages between 4 and 9 months. Ontogenetic data revealed: (i) fetal trabecular architecture is similar between sexes; (ii) the proximal femoral metaphysis is physically larger, with thicker trabeculae and greater bone volume fraction relative to the humerus, but other aspects of trabecular architecture are similar between the bones; (iii) between 4 and 9 months gestation there is no apparent sexual or limb dimorphism in patterns of growth, but the size of the humerus and femur diverges early in development. Additionally, both bones exhibit significant increases in mean trabecular thickness (and for the femur alone, bone volume fraction) but minimal trabecular reorganisation (i.e., no significant changes in degree of anisotropy, connectivity density, or fractal dimension). Overall, these data suggest that in contrast to data from the axial skeleton, prenatal growth of long bones in the limbs is characterised by size increase, without major reorganizational changes in trabecular architecture.
Journal Article
sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss
2016
sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling.
Journal Article
Can repeated in vivo micro-CT irradiation during adolescence alter bone microstructure, histomorphometry and longitudinal growth in a rodent model?
by
Mustafy, Tanvir
,
Benoit, Aurélie
,
Villemure, Isabelle
in
Adolescence
,
Adolescent
,
Adolescents
2018
In vivo micro-computed tomography (micro-CT) can monitor longitudinal changes in bone mass and microstructure in small rodents but imposing high doses of radiation can damage the bone tissue. However, the effect of weekly micro-CT scanning during the adolescence on bone growth and architecture is still unknown. The right proximal tibia of male Sprague-Dawley rats randomized into three dose groups of 0.83, 1.65 and 2.47 Gy (n = 11/group) were CT scanned at weekly intervals from 4th to 12th week of age. The left tibia was used as a control and scanned only at the last time point. Bone marrow cells were investigated, bone growth rates and histomorphometric analyses were performed, and bone structural parameters were determined for both left and right tibiae. Radiation doses of 1.65 and 2.47 Gy affected bone marrow cells, heights of the proliferative and hypertrophic zones, and bone growth rates in the irradiated tibiae. For the 1.65 Gy group, irradiated tibiae resulted in lower BMD, Tb.Th, Tb.N and a higher Tb.Sp compared with the control tibiae. A decrease in BMD, BV/TV, Tb.Th, Tb.N and an increase in Tb.Sp were observed between the irradiated and control tibiae for the 2.47 Gy group. For cortical bone parameters, no effects were noticed for 1.65 and 0.83 Gy groups, but a lower Ct.Th was observed for 2.47 Gy group. Tibial bone development was adversely impacted and trabecular bone, together with bone marrow cells, were negatively affected by the 1.65 and 2.47 Gy radiation doses. Cortical bone microstructure was affected for 2.47 Gy group. However, bone development and morphometry were not affected for 0.83 Gy group. These findings can be used as a proof of concept for using the reasonable high-quality image acquisition under 0.83 Gy radiation doses during the adolescent period of rats without interfering with the bone development process.
Journal Article
Collagen VIα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling
2020
Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in
Col6α2
-KO mice compared with
WT
. Dynamic histomorphometry showed no differences in trabecular bone formation between
WT
and
Col6α2
-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with
WT
mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and
Col6α2-
KO mice were treated with rmTNFα protein, the
Col6α2-
KO cells expressed higher levels of
TNFα
mRNA compared with
WT
cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from
Col6α2-
KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.
Journal Article
Trabecular Bone Parameters, TIMP-2, MMP-8, MMP-13, VEGF Expression and Immunolocalization in Bone and Cartilage in Newborn Offspring Prenatally Exposed to Fumonisins
by
Hułas-Stasiak, Monika
,
Muszyński, Siemowit
,
Arciszewski, Marcin Bartłomiej
in
Animals
,
Animals, Newborn
,
Bone Development - genetics
2021
Fumonisins are protein serine/threonine phosphatase inhibitors and potent inhibitors of sphingosine N-acyltransferase (ceramide synthase) disrupting de novo sphingolipid biosynthesis. The experiment was conducted to evaluate the effects of fumonisins (FB) exposure from the 7th day of pregnancy to parturition on offspring bone development. The rats were randomly allocated to either a control group (n = 6), not treated with FBs, or to one of the two groups intoxicated with FBs (either at 60 mg FB/kg b.w. or at 90 mg FB/kg b.w. Numerous negative, offspring sex-dependent effects of maternal FB exposure were observed with regards to the histomorphometry of trabecular bone. These effects were due to FB-inducted alterations in bone metabolism, as indicated by changes in the expression of selected proteins involved in bone development: tissue inhibitor of metalloproteinases 2 (TIMP-2), matrix metalloproteinase 8 (MMP-8), matrix metalloproteinase 13 (MMP-13), and vascular endothelial growth factor (VEGF). The immunolocalization of MMPs and TIMP-2 was performed in trabecular and compact bone, as well as articular and growth plate cartilages. Based on the results, it can be concluded that the exposure of pregnant dams to FB negatively affected the expression of certain proteins responsible for bone matrix degradation in newborns prenatally exposed to FB in a dose- and sex-dependent manner.
Journal Article
Osterix regulates corticalization for longitudinal bone growth via integrin β3 expression
2018
Corticalization, coalescence of trabecular bone into the metaphyseal cortex, is important for the longitudinal growth of long bones. However, little is known about the molecular mechanisms controlling corticalization. To understand the molecular mechanisms underlying corticalization, we analyzed osteoblast-specific
Osterix
-knockout mice (Col-OMT). In control mice, corticalization was initiated after 7 postnatal days, and the number of osteoblasts in the peripheral spongiosa was increased compared to the number in the central spongiosa. In contrast, in Col-OMT mice, corticalization was delayed, and the number of osteoblasts in peripheral zones was unchanged compared to the central zone. Furthermore, femoral length was decreased in Col-OMT mice at 1 month. Because Col-OMT mice exhibited impaired matrix coalescence and osteoblast migration, we evaluated integrin signaling in Col-OMT mice. Osterix bound to the
Itgb3
promoter and increased transcription of the
Itgb3
gene in osteoblast cells. Interestingly, the inner and outer cortical bones were separated in
Itgb3
-null mice at postnatal day 7. In
Itgb3
-null mice, the number of osteoblasts in peripheral zones was not changed, and the femoral length was decreased. Taken together, these results indicate that Osterix regulates corticalization for longitudinal bone growth via the control of integrin β3 expression in osteoblasts. Our findings imply that the ability to control osteoblast function during corticalization may help in the treatment of short stature.
Bone growth: signaling for length
South Korean researchers have elucidated the molecular mechanisms that regulate bone length in mammals. Longitudinal bone growth is a tightly regulated process that mostly takes place after birth and is triggered by mechanical stimuli. Previous studies identified osterix as a key protein for bone development, but little was known about its involvement in longitudinal bone growth. Eui-Sic Cho and colleagues at Chonbuk National University in Jeonju showed that mice lacking osterix in bone-building cells (osteoblasts) have shorter limbs than control mice and that the migration of these cells to peripheral areas of bone is disrupted shortly after birth. Furthermore, they found that osterix regulates bone length by activating a gene encoding the cell adhesion protein integrinβ3. Understanding how integrin signaling in osteoblasts regulates longitudinal bone growth could lead to new treatments for short stature in humans.
Journal Article
Ninjurin1 positively regulates osteoclast development by enhancing the survival of prefusion osteoclasts
2019
Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that
Ninj1
−/−
mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis in prefusion OCs (preOCs). Overexpression of Ninj1 enhanced the survival of mouse macrophage/preOC RAW264.7 cells in osteoclastogenic culture, suggesting that Ninj1 is important for the survival of preOCs. Finally, analysis of publicly available microarray data sets revealed a potent correlation between high
NINJ1
expression and destructive bone disorders in humans. Our data indicate that Ninj1 plays an important role in bone homeostasis by enhancing the survival of preOCs.
Bone development: Regulating the remodelers
A protein called ninjurin1 regulates the activity of bone-degrading osteoclast cells, and may play an important role in various skeletal degenerative disorders. Normal skeletal development requires careful coordination by bone-building osteoblasts and by osteoclasts, which break down and remodel bone. Researchers led by Kyu-Won Kim of Seoul National University in South Korea have shown that ninjurin1 regulates both the development and survival of osteoclasts. They generated genetically modified mice that lack this protein, and observed notable skeletal defects, including abnormal accumulation of bone mass in long bones such as the femur. Elevated ninjurin1 levels are a feature of conditions such as osteoporosis and rheumatoid arthritis, and the researchers propose that therapeutic agents that target this molecule could help control the bone damage caused by improperly regulated osteoclasts.
Journal Article
Mutation of the galectin‐3 glycan‐binding domain (Lgals3‐R200S) enhances cortical bone expansion in male mice and trabecular bone mass in female mice
2022
We previously observed that genomic loss of galectin‐3 (Gal‐3; encoded by Lgals3) in mice has a significant protective effect on age‐related bone loss. Gal‐3 has both intracellular and extracellular functionality, and we wanted to assess whether the affect we observed in the Lgals3 knockout (KO) mice could be attributed to the ability of Gal‐3 to bind glycoproteins. Mutation of a highly conserved arginine to a serine in human Gal‐3 (LGALS3‐R186S) blocks glycan binding and secretion. We generated mice with the equivalent mutation (Lgals3‐R200S) and observed a subsequent reduction in Gal‐3 secretion from mouse embryonic fibroblasts and in circulating blood. When examining bone structure in aged mice, we noticed some similarities to the Lgals3‐KO mice and some differences. First, we observed greater bone mass in Lgals3‐R200S mutant mice, as was previously observed in Lgals3‐KO mice. Like Lgals3‐KO mice, significantly increased trabecular bone mass was only observed in female Lgals3‐R200S mice. These results suggest that the greater bone mass observed is driven by the loss of extracellular Gal‐3 functionality. However, the results from our cortical bone expansion data showed a sex‐dependent difference, with only male Lgals3‐KO mice having an increased response, contrasting with our earlier study. These notable sex differences suggest a potential role for sex hormones, most likely androgen signaling, being involved. In summary, our results suggest that targeting extracellular Gal‐3 function may be a suitable treatment for age‐related loss of bone mass. Galectin‐3 (Lgals3) has glycan‐binding and protein–protein interactions. Knockout mice (Lgals3‐KO) have sexually dimorphic protection against bone loss. A mutation in the glycan‐binding domain (Human:R186S) disrupts galectin‐3 glycan‐binding and secretion in vitro. Generating the equivalent mutation in mice (R200S), we observed reduced galectin‐3 secretion and increased bone mass at 36 weeks, suggesting the importance of the glycan‐binding domain on the phenotype.
Journal Article