Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,565
result(s) for
"Cancer Vaccines - genetics"
Sort by:
mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer
by
Lowery, Frank J.
,
Shindorf, Mackenzie L.
,
Zaks, Tal
in
Amino Acid Substitution
,
Antigens
,
Antigens, Neoplasm - administration & dosage
2020
BACKGROUNDTherapeutic vaccinations against cancer have mainly targeted differentiation antigens, cancer-testis antigens, and overexpressed antigens and have thus far resulted in little clinical benefit. Studies conducted by multiple groups have demonstrated that T cells recognizing neoantigens are present in most cancers and offer a specific and highly immunogenic target for personalized vaccination.METHODSWe recently developed a process using tumor-infiltrating lymphocytes to identify the specific immunogenic mutations expressed in patients' tumors. Here, validated, defined neoantigens, predicted neoepitopes, and mutations of driver genes were concatenated into a single mRNA construct to vaccinate patients with metastatic gastrointestinal cancer.RESULTSThe vaccine was safe and elicited mutation-specific T cell responses against predicted neoepitopes not detected before vaccination. Furthermore, we were able to isolate and verify T cell receptors targeting KRASG12D mutation. We observed no objective clinical responses in the 4 patients treated in this trial.CONCLUSIONThis vaccine was safe, and potential future combination of such vaccines with checkpoint inhibitors or adoptive T cell therapy should be evaluated for possible clinical benefit in patients with common epithelial cancers.TRIAL REGISTRATIONPhase I/II protocol (NCT03480152) was approved by the IRB committee of the NIH and the FDA.FUNDINGCenter for Clinical Research, NCI, NIH.
Journal Article
Cancer Vaccines, Adjuvants, and Delivery Systems
by
Brentville, Victoria A.
,
Symonds, Peter
,
Durrant, Lindy G.
in
adjuvant
,
Adjuvants
,
Adjuvants, Immunologic - administration & dosage
2021
Vaccination was first pioneered in the 18th century by Edward Jenner and eventually led to the development of the smallpox vaccine and subsequently the eradication of smallpox. The impact of vaccination to prevent infectious diseases has been outstanding with many infections being prevented and a significant decrease in mortality worldwide. Cancer vaccines aim to clear active disease instead of aiming to prevent disease, the only exception being the recently approved vaccine that prevents cancers caused by the Human Papillomavirus. The development of therapeutic cancer vaccines has been disappointing with many early cancer vaccines that showed promise in preclinical models often failing to translate into efficacy in the clinic. In this review we provide an overview of the current vaccine platforms, adjuvants and delivery systems that are currently being investigated or have been approved. With the advent of immune checkpoint inhibitors, we also review the potential of these to be used with cancer vaccines to improve efficacy and help to overcome the immune suppressive tumor microenvironment.
Journal Article
An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma
2020
Treating patients who have cancer with vaccines that stimulate a targeted immune response is conceptually appealing, but cancer vaccine trials have not been successful in late-stage patients with treatment-refractory tumours
1
,
2
. We are testing melanoma FixVac (BNT111)—an intravenously administered liposomal RNA (RNA-LPX) vaccine, which targets four non-mutated, tumour-associated antigens that are prevalent in melanoma—in an ongoing, first-in-human, dose-escalation phase I trial in patients with advanced melanoma (Lipo-MERIT trial, ClinicalTrials.gov identifier NCT02410733). We report here data from an exploratory interim analysis that show that melanoma FixVac, alone or in combination with blockade of the checkpoint inhibitor PD1, mediates durable objective responses in checkpoint-inhibitor (CPI)-experienced patients with unresectable melanoma. Clinical responses are accompanied by the induction of strong CD4
+
and CD8
+
T cell immunity against the vaccine antigens. The antigen-specific cytotoxic T-cell responses in some responders reach magnitudes typically reported for adoptive T-cell therapy, and are durable. Our findings indicate that RNA-LPX vaccination is a potent immunotherapy in patients with CPI-experienced melanoma, and suggest the general utility of non-mutant shared tumour antigens as targets for cancer vaccination.
Results of an exploratory interim analysis from a phase I trial show that an RNA vaccine targeted towards four melanoma-associated antigens produces durable objective responses in patients with melanoma that are accompanied by strong CD4
+
and CD8
+
T-cell immunity.
Journal Article
The emerging clinical relevance of genomics in cancer medicine
2018
The combination of next-generation sequencing and advanced computational data analysis approaches has revolutionized our understanding of the genomic underpinnings of cancer development and progression. The coincident development of targeted small molecule and antibody-based therapies that target a cancer’s genomic dependencies has fuelled the transition of genomic assays into clinical use in patients with cancer. Beyond the identification of individual targetable alterations, genomic methods can gauge mutational load, which might predict a therapeutic response to immune-checkpoint inhibitors or identify cancer-specific proteins that inform the design of personalized anticancer vaccines. Emerging clinical applications of cancer genomics include monitoring treatment responses and characterizing mechanisms of resistance. The increasing relevance of genomics to clinical cancer care also highlights several considerable challenges, including the need to promote equal access to genomic testing.
Journal Article
A DNA nanodevice-based vaccine for cancer immunotherapy
by
Wang, Yuanning
,
Liu, Shaoli
,
Liu, Jianbing
in
631/67/1059/2325
,
639/301/357/341
,
639/925/926/1048
2021
A major challenge in cancer vaccine therapy is the efficient delivery of antigens and adjuvants to stimulate a controlled yet robust tumour-specific T-cell response. Here, we describe a structurally well defined DNA nanodevice vaccine generated by precisely assembling two types of molecular adjuvants and an antigen peptide within the inner cavity of a tubular DNA nanostructure that can be activated in the subcellular environment to trigger T-cell activation and cancer cytotoxicity. The integration of low pH-responsive DNA ‘locking strands’ outside the nanostructures enables the opening of the vaccine in lysosomes in antigen-presenting cells, exposing adjuvants and antigens to activate a strong immune response. The DNA nanodevice vaccine elicited a potent antigen-specific T-cell response, with subsequent tumour regression in mouse cancer models. Nanodevice vaccination generated long-term T-cell responses that potently protected the mice against tumour rechallenge.
A DNA nanodevice vaccine has been developed and utilized to stimulate a tumour-specific cytotoxic T lymphocyte response in vivo, leading to the inhibition of tumour growth as well as prevention of metastasis.
Journal Article
Personalized vaccines for cancer immunotherapy
by
Türeci, Özlem
,
Sahin, Ugur
in
Antigens, Neoplasm - genetics
,
Antigens, Neoplasm - immunology
,
Cancer Vaccines - genetics
2018
Cancer is characterized by an accumulation of genetic alterations. Somatic mutations can generate cancer-specific neoepitopes that are recognized by autologous T cells as foreign and constitute ideal cancer vaccine targets. Every tumor has its own unique composition of mutations, with only a small fraction shared between patients. Technological advances in genomics, data science, and cancer immunotherapy now enable the rapid mapping of the mutations within a genome, rational selection of vaccine targets, and on-demand production of a therapy customized to a patient’s individual tumor. First-in-human clinical trials of personalized cancer vaccines have shown the feasibility, safety, and immunotherapeutic activity of targeting individual tumor mutation signatures. With vaccination development being promoted by emerging innovations of the digital age, vaccinating a patient with individual tumor mutations may become the first truly personalized treatment for cancer.
Journal Article
mRNA therapeutics in cancer immunotherapy
by
Beck, Jan D.
,
Sahin, Ugur
,
Vormehr, Mathias
in
2021 mRNA Special Issue
,
Adjuvanticity
,
Animals
2021
Synthetic mRNA provides a template for the synthesis of any given protein, protein fragment or peptide and lends itself to a broad range of pharmaceutical applications, including different modalities of cancer immunotherapy. With the ease of rapid, large scale Good Manufacturing Practice-grade mRNA production, mRNA is ideally poised not only for off-the shelf cancer vaccines but also for personalized neoantigen vaccination. The ability to stimulate pattern recognition receptors and thus an anti-viral type of innate immune response equips mRNA-based vaccines with inherent adjuvanticity. Nucleoside modification and elimination of double-stranded RNA can reduce the immunomodulatory activity of mRNA and increase and prolong protein production. In combination with nanoparticle-based formulations that increase transfection efficiency and facilitate lymphatic system targeting, nucleoside-modified mRNA enables efficient delivery of cytokines, costimulatory receptors, or therapeutic antibodies. Steady but transient production of the encoded bioactive molecule from the mRNA template can improve the pharmacokinetic, pharmacodynamic and safety properties as compared to the respective recombinant proteins. This may be harnessed for applications that benefit from a higher level of expression control, such as chimeric antigen receptor (CAR)-modified adoptive T-cell therapies. This review highlights the advancements in the field of mRNA-based cancer therapeutics, providing insights into key preclinical developments and the evolving clinical landscape.
Journal Article
Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation
by
Miao, Lei
,
Sadtler, Kaitlyn
,
Lin, Jiaqi
in
Anticancer properties
,
Antigen-presenting cells
,
Antigens
2019
Therapeutic messenger RNA vaccines enable delivery of whole antigens, which can be advantageous over peptide vaccines. However, optimal efficacy requires both intracellular delivery, to allow antigen translation, and appropriate immune activation. Here, we developed a combinatorial library of ionizable lipid-like materials to identify mRNA delivery vehicles that facilitate mRNA delivery in vivo and provide potent and specific immune activation. Using a three-dimensional multi-component reaction system, we synthesized and evaluated the vaccine potential of over 1,000 lipid formulations. The top candidate formulations induced a robust immune response, and were able to inhibit tumor growth and prolong survival in melanoma and human papillomavirus E7 in vivo tumor models. The top-performing lipids share a common structure: an unsaturated lipid tail, a dihydroimidazole linker and cyclic amine head groups. These formulations induce antigen-presenting cell maturation via the intracellular stimulator of interferon genes (STING) pathway, rather than through Toll-like receptors, and result in limited systemic cytokine expression and enhanced anti-tumor efficacy.
Journal Article
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
2017
The authors report the first-in-human application of personalized neo-antigen RNA vaccines in patients with melanoma.
Personalized cancer vaccine trials
Neoantigens have long been considered optimal targets for anti-tumour vaccines, and recent mutation coding and prediction techniques have aimed to streamline their identification and selection. Two papers in this issue report results from personalized neoantigen vaccine trials in patients with cancer. Catherine Wu and colleagues report the results of a phase I trial of a personalized cancer vaccine that targets up to 20 patient neoantigens. The vaccine was safe and induced tumour-antigen-specific immune responses. Four out of six patients treated showed no recurrence at 25 months, and progressing patients responded to further therapy with checkpoint inhibitor. Ugur Sahin and colleagues report the first-in-human application of a personalized neoantigen vaccine in patients with melanoma. Their vaccination strategy includes sequencing and computational identification of neoantigens from patients, and design and manufacture of a poly-antigen RNA vaccine for treatment. In 13 patients, the vaccine boosted immunity against some of the selected tumour antigens from the individual patients, and two patients showed infiltration of tumour-reactive T cells. These results suggest that personalized vaccines could be refined and tailored to provide clinical benefit as cancer immunotherapies.
T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations
1
,
2
. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of β2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.
Journal Article
From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape
by
Lee, Sang-Soo
,
Chakraborty, Chiranjib
,
Sharma, Ashish Ranjan
in
Antigens
,
Biotechnology
,
BNT162b2
2021
Recently, mRNA vaccines have become a significant type of therapeutic and have created new fields in the biopharmaceutical industry. mRNA vaccines are promising next-generation vaccines that have introduced a new age in vaccinology. The recent approval of two COVID-19 mRNA vaccines (mRNA-1273 and BNT162b2) has accelerated mRNA vaccine technology and boosted the pharmaceutical and biotechnology industry. These mRNA vaccines will help to tackle COVID-19 pandemic through immunization, offering considerable hope for future mRNA vaccines. Human trials with data both from mRNA cancer vaccines and mRNA infectious disease vaccines have provided encouraging results, inspiring the pharmaceutical and biotechnology industries to focus on this area of research. In this article, we discuss current mRNA vaccines broadly in two parts. In the first part, mRNA vaccines in general and COVID-19 mRNA vaccines are discussed. We presented the mRNA vaccine structure in general, the different delivery systems, the immune response, and the recent clinical trials for mRNA vaccines (both for cancer mRNA vaccines and different infectious diseases mRNA vaccines). In the second part, different COVID-19 mRNA vaccines are explained. Finally, we illustrated a snapshot of the different leading mRNA vaccine developers, challenges, and future prospects of mRNA vaccines.
Journal Article