Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
713
result(s) for
"Cancer dormancy"
Sort by:
How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy
2023
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Journal Article
Microenvironment-mediated cancer dormancy
by
Werner, Carsten
,
Fratzl, Peter
,
Bakhshandeh, Sadra
in
Animals
,
Biological Sciences
,
Biophysics and Computational Biology
2022
Dormancy is an evolutionarily conserved protective mechanism widely observed in nature. A pathological example is found during cancer metastasis, where cancer cells disseminate from the primary tumor, home to secondary organs, and enter a growth-arrested state, which could last for decades. Recent studies have pointed toward the microenvironment being heavily involved in inducing, preserving, or ceasing this dormant state, with a strong focus on identifying specific molecular mechanisms and signaling pathways. Increasing evidence now suggests the existence of an interplay between intracellular as well as extracellular biochemical and mechanical cues in guiding such processes. Despite the inherent complexities associated with dormancy, proliferation, and growth of cancer cells and tumor tissues, viewing these phenomena from a physical perspective allows for a more global description, independent from many details of the systems. Building on the analogies between tissues and fluids and thermodynamic phase separation concepts, we classify a number of proposed mechanisms in terms of a thermodynamic metastability of the tumor with respect to growth. This can be governed by interaction with the microenvironment in the form of adherence (wetting) to a substrate or by mechanical confinement of the surrounding extracellular matrix. By drawing parallels with clinical and experimental data, we advance the notion that the local energy minima, or metastable states, emerging in the tissue droplet growth kinetics can be associated with a dormant state. Despite its simplicity, the provided framework captures several aspects associated with cancer dormancy and tumor growth.
Journal Article
Remodeling the ECM: Implications for Metastasis and Tumor Dormancy
by
Bravo-Cordero, Jose Javier
,
Di Martino, Julie S.
,
Akhter, Tasmiah
in
Blood vessels
,
Breast cancer
,
Cancer
2021
While most primary tumors can be effectively treated, therapeutics fail to efficiently eliminate metastases. Metastases arise from cancer cells that leave the primary tumor and seed distant sites. Recent studies have shown that cancer cells disseminate early during tumor progression and can remain dormant for years before they resume growth. In these metastatic organs, cancer cells reside in microenvironments where they interact with other cells, but also with the extracellular matrix (ECM). The ECM was long considered to be an inert, non-cellular component of tissues, providing their architecture. However, in recent years, a growing body of evidence has shown that the ECM is a key driver of cancer progression, and it can exert effects on tumor cells, regulating their metastatic fate. ECM remodeling and degradation is required for the early steps of the metastatic cascade: invasion, tumor intravasation, and extravasation. Similarly, ECM molecules have been shown to be important for metastatic outgrowth. However, the role of ECM molecules on tumor dormancy and their contribution to the dormancy-supportive niches is not well understood. In this perspective article, we will summarize the current knowledge of ECM and its role in tumor metastasis and dormancy. We will discuss how a better understanding of the individual components of the ECM niche and their roles mediating the dormant state of disseminated tumor cells (DTCs) will advance the development of new therapies to target dormant cells and prevent metastasis outgrowth.
Journal Article
Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies
by
Kang, Mingon
,
Yang, Sumin
,
Kim, Sung-Hyun
in
Animals
,
Artificial intelligence
,
Biomedical and Life Sciences
2025
Delving into cancer dormancy has been an inherent task that may drive the lethal recurrence of cancer after primary tumor relief. Cells in quiescence can survive for a short or long term in silence, may undergo genetic or epigenetic changes, and can initiate relapse through certain contextual cues. The state of dormancy can be induced by multiple conditions including cancer drug treatment, in turn, undergoes a life cycle that generally occurs through dissemination, invasion, intravasation, circulation, immune evasion, extravasation, and colonization. Throughout this cascade, a cellular machinery governs the fate of individual cells, largely affected by gene regulation. Despite its significance, a precise view of cancer dormancy is yet hampered. Revolutionizing advanced single cell and long read sequencing through analysis methodologies and artificial intelligence, the most recent stage in the research tool progress, is expected to provide a holistic view of the diverse aspects of cancer dormancy.
Journal Article
In vitro Models of Breast Cancer Metastatic Dormancy
2020
Delayed relapses at distant sites are a common clinical observation for certain types of cancers after removal of primary tumor, such as breast and prostate cancer. This evidence has been explained by postulating a long period during which disseminated cancer cells (DCCs) survive in a foreign environment without developing into overt metastasis. Because of the asymptomatic nature of this phenomenon, isolation, and analysis of disseminated dormant cancer cells from clinically disease-free patients is ethically and technically highly problematic and currently these data are largely limited to the bone marrow. That said, detecting, profiling and treating indolent metastatic lesions before the onset of relapse is the imperative. To overcome this major limitation many laboratories developed
models of the metastatic niche for different organs and different types of cancers. In this review we focus specifically on
models designed to study metastatic dormancy of breast cancer cells (BCCs). We provide an overview of the BCCs employed in the different organotypic systems and address the components of the metastatic microenvironment that have been shown to impact on the dormant phenotype: tissue architecture, stromal cells, biochemical environment, oxygen levels, cell density. A brief description of the organ-specific
models for bone, liver, and lung is provided. Finally, we discuss the strategies employed so far for the validation of the different systems.
Journal Article
Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer—directs the road towards therapy resistance, metastatic progression and recurrence
by
Das, Salini
,
Mukherjee, Sutapa
,
Thakur, Debanjan
in
Breast cancer
,
Breast carcinoma
,
Cancer therapies
2024
Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.
Journal Article
Fibroblasts in cancer dormancy: foe or friend?
by
Zhang, Wei-long
,
Li, Mao
,
Tang, Ya-Jie
in
Biomedical and Life Sciences
,
Biomedicine
,
Bone marrow
2021
Cancer dormancy is defined that the residual cancer cells could enter into a state of quiescence and patients remain asymptomatic for years or even decades after anti-tumor therapies. Fibroblasts, which represent a predominant cell type in tumor microenvironment, play a pivotal role in determining the ultimate fate of tumor cells. This review recapitulates the pleiotropic roles of fibroblasts which are divided into normal, senescent, cancer-associated fibroblasts (CAFs) and circulation CAFs in tumor dormancy, relapse, metastasis and resistance to therapy to help the treatment of cancer metastasis.
Journal Article
Neoadjuvant Therapy for Breast Cancer as a Model for Translational Research
2019
Neoadjuvant therapy, where patients receive systemic therapy before surgical removal of the tumour, can downstage tumours allowing breast-conserving surgery, rather than mastectomy. In addition to its impact on surgery, the neoadjuvant setting offers a valuable opportunity to monitor individual tumour response. The effectiveness of standard and/or potential new therapies can be tested in the neoadjuvant pre-surgical setting. It can potentially help to identify markers differentiating patients that will potentially benefit from continuing with the same or a different adjuvant treatment enabling personalised treatment. Characterising the molecular response to treatment over time can more accurately identify the significant differences between baseline samples that would not be identified without post-treatment samples. In this review, we discuss the potential and challenges of using the neoadjuvant setting in translational breast cancer research, considering the implications for improving our understanding of response to treatment, predicting therapy benefit, modelling breast cancer dormancy, and the development of drug resistance.
Journal Article
Cancer Cells in Sleep Mode: Wake Them to Eliminate or Keep Them Asleep Forever?
2024
Cancer cell dormancy is a critical phase in cancer development, wherein cancer cells exist in a latent state marked by temporary but reversible growth arrest. This dormancy phase contributes to anticancer drug resistance, cancer recurrence, and metastasis. Treatment strategies aimed at cancer dormancy can be categorized into two contradictory approaches: inducing cancer cells into a dormant state or eliminating dormant cells. While the former seeks to establish permanent dormancy, the latter aims at eradicating this small population of dormant cells. In this review, we explore the current advancements in therapeutic methods targeting cancer cell dormancy and discuss future strategies. The concept of cancer cell dormancy has emerged as a promising avenue for novel cancer treatments, holding the potential for breakthroughs in the future.
Journal Article
Fourteenth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer
2023
The fourteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) on Methods in Mammary Gland Biology and Breast Cancer was held on April 26th − 29th in Weggis, Switzerland. For the first time, early career researchers organised and took part in an additional ECR workshop on the 26th of April, which was received with great enthusiasm. The topics of the main workshop included mammary branching and morphogenesis, novel experimental systems (model organisms), systemic influences on tumour progression and the tumour microenvironment. Novel and recent findings were shared across excellent oral and poster presentations.
Journal Article