Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14,741
result(s) for
"Carcinoma, Squamous Cell - genetics"
Sort by:
The 12p13.33/RAD52 Locus and Genetic Susceptibility to Squamous Cell Cancers of Upper Aerodigestive Tract
2015
Genetic variants located within the 12p13.33/RAD52 locus have been associated with lung squamous cell carcinoma (LUSC). Here, within 5,947 UADT cancers and 7,789 controls from 9 different studies, we found rs10849605, a common intronic variant in RAD52, to be also associated with upper aerodigestive tract (UADT) squamous cell carcinoma cases (OR = 1.09, 95% CI: 1.04-1.15, p = 6x10(-4)). We additionally identified rs10849605 as a RAD52 cis-eQTL inUADT(p = 1x10(-3)) and LUSC (p = 9x10(-4)) tumours, with the UADT/LUSC risk allele correlated with increased RAD52 expression levels. The 12p13.33 locus, encompassing rs10849605/RAD52, was identified as a significant somatic focal copy number amplification in UADT(n = 374, q-value = 0.075) and LUSC (n = 464, q-value = 0.007) tumors and correlated with higher RAD52 tumor expression levels (p = 6x10(-48) and p = 3x10(-29) in UADT and LUSC, respectively). In combination, these results implicate increased RAD52 expression in both genetic susceptibility and tumorigenesis of UADT and LUSC tumors.
Journal Article
Deciphering the cells of origin of squamous cell carcinomas
by
Blanpain, Cédric
,
Sánchez-Danés, Adriana
in
Phenotypes
,
Squamous cell carcinoma
,
Tumor suppressor genes
2018
Squamous cell carcinomas (SCCs) are among the most prevalent human cancers. SCC comprises a wide range of tumours originated from diverse anatomical locations that share common genetic mutations and expression of squamous differentiation markers. SCCs arise from squamous and non-squamous epithelial tissues. Here, we discuss the different studies in which the cell of origin of SCCs has been uncovered by expressing oncogenes and/or deleting tumour suppressor genes in the different cell lineages that compose these epithelia. We present evidence showing that the squamous differentiation phenotype of the tumour depends on the type of mutated oncogene and the cell of origin, which dictate the competence of the cells to initiate SCC formation, as well as on the aggressiveness and invasive properties of these tumours.
Journal Article
Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma
by
Wileyto, E. Paul
,
Diehl, J. Alan
,
Natsuizaka, Mitsuteru
in
631/67
,
631/67/1504/1477
,
631/67/395
2017
Notch1 transactivates
Notch3
to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial–mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-β present in the tumor microenvironment. We find that TGFβ activates the transcription factor ZEB1 to repress
Notch3
, thereby limiting terminal differentiation. Concurrently, TGFβ drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC.
Notch receptors can exert different roles in cancer. In this manuscript, the authors reveal that Notch1 activation and EMT promote tumor initiation and cancer cell heterogeneity in squamous cell carcinoma, while the repression of Notch3 by ZEB1 limits Notch1-induced differentiation, permitting Notch1-mediated EMT.
Journal Article
Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis
2019
Esophageal squamous cell cancer (ESCC) is a high incidence and mortality disease worldwide. However, specificity and sensitivity of its diagnostic and prognostic biomarkers are still unsatisfactory. Recently, circular RNAs (circRNAs) as biomarkers have been studied extensively while the expression profile and clinical significance of circRNAs in ESCC have rarely been studied. We performed circular RNA microarray in 3 pairs of ESCC frozen tumor and non-tumor tissues to identify ESCC-related circRNAs and found 1045 up-regulated and 1032 down-regulated circRNAs among which 6 circRNAs (hsa_circ_0062459, hsa_circ_0076535, hsa_circ_0072215, hsa_circ_0042261, hsa_circ_0001946, and hsa_circ_0043603) displayed consistency with microarray results by qRT-PCR. 3 circRNAs (hsa_circ_0062459, hsa_circ_0001946, and hsa_circ_0043603) were also detected in plasma and 2 of them except hsa_circ_0062459 could be used as diagnostic biomarkers and found in exosome of cell-conditioned culture conditioned media. The AUC, sensitivity and specificity of hsa_circ_0001946 were 0.894, 92, 80%, of hsa_circ_0043603 were 0.836, 64, 92% while a signature combining them were 0.928, 84 and 98%. Hsa_circ_0001946 was confirmed to predict the recurrence, overall survival (OS) and disease-free survival (DFS) in frozen and FFPE tissues, while its overexpression decreased cell proliferation, migration, and invasion.
Journal Article
Re-evaluation of the relationship between PrPc expression and patient prognosis in primary esophageal squamous cell carcinoma and primary hepatocellular carcinoma
2024
PrPc is expressed in various tumors and is associated with cancer progression, but previous studies have shown conflicting results regarding its relationship with patient prognosis—potentially due to differences in the antibodies used. This study aimed to clarify the relationship between PrPc expression and primary esophageal squamous cell carcinoma (ESCC) and primary hepatocellular carcinoma (HCC) using a novel anti-PrPc antibody, 4AA-m, noted for its high specificity and sensitivity. We used flow cytometry to detect PrPc expression in ESCC and HCC cell lines. Immunohistochemistry with 4AA-m was then performed on tissue microarrays from 179 patients with primary ESCC and 92 patients with primary HCC. PrPc expression was semi-quantitatively assessed using the Tumor-DAB-H-Score, and its association with tumor prognosis was analyzed. In ESCC, PrPc expression was negatively correlated with lymph node metastasis, and patients with high PrPc expression had better overall survival compared to those with low expression. PrPc expression was identified as an independent prognostic factor for overall survival in ESCC. In HCC, patients with positive PrPc expression had shorter recurrence-free survival (RFS) than those without PrPc expression. PrPc expression was also found to be an independent prognostic factor for RFS in HCC.
Journal Article
Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors
2018
Identifying tumor antigen-specific T cells from cancer patients has important implications for immunotherapy diagnostics and therapeutics. Here, we show that CD103
+
CD39
+
tumor-infiltrating CD8 T cells (CD8 TIL) are enriched for tumor-reactive cells both in primary and metastatic tumors. This CD8 TIL subset is found across six different malignancies and displays an exhausted tissue-resident memory phenotype. CD103
+
CD39
+
CD8 TILs have a distinct T-cell receptor (TCR) repertoire, with T-cell clones expanded in the tumor but present at low frequencies in the periphery. CD103
+
CD39
+
CD8 TILs also efficiently kill autologous tumor cells in a MHC-class I-dependent manner. Finally, higher frequencies of CD103
+
CD39
+
CD8 TILs in patients with head and neck cancer are associated with better overall survival. Our data thus describe an approach for detecting tumor-reactive CD8 TILs that will help define mechanisms of existing immunotherapy treatments, and may lead to future adoptive T-cell cancer therapies.
Identifying and enumerating tumor-specific CD8 T cells are important for assessing cancer prognosis and therapy efficacy. Here the authors show that CD39 and CD103 mark a subset of tumor-infiltrating CD8 T cells that are tumor-reactive and exhibit characteristics of exhausted or tissue-resident memory T cells.
Journal Article
Low mitochondrial DNA copy number induces chemotherapy resistance via epithelial-mesenchymal transition by DNA methylation in esophageal squamous cancer cells
by
Takahashi, Tsuyoshi
,
Kurokawa, Yukinori
,
Makino, Tomoki
in
Biomedical and Life Sciences
,
Biomedicine
,
Cancer
2022
Background
Esophageal squamous cell carcinoma (ESCC) is one of the most severe cancers and is characterized by chemotherapy resistance and poor prognosis associated with epithelial-mesenchymal transition (EMT). In a previous study, a low mitochondrial DNA (mtDNA) copy number was associated with poorer prognosis and induced EMT in ESCC. However, the detailed mechanism related to mtDNA copy number and EMT is unclear. The aim of this study was to clarify the mechanism by which a change in mtDNA copy number contributes to EMT and to examine treatment of chemotherapy resistance in ESCC.
Methods
The association between low mtDNA copy number and chemotherapy resistance was investigated using specimens from 88 patients who underwent surgery after neoadjuvant chemotherapy. Then, the mtDNA content of human ESCC cell lines, TE8 and TE11, was depleted by knockdown of mitochondrial transcription factor A expression. The present study focused on modulation of mitochondrial membrane potential (MMP) and DNA methylation as the mechanisms by which mtDNA copy number affects EMT. mRNA and protein expression, chemotherapy sensitivity, proliferation, MMP and DNA methylation were evaluated, and in vitro and in vivo assays were conducted to clarify these mechanisms.
Results
ESCC patients with decreased mtDNA copy number who underwent R0 resection after neoadjuvant chemotherapy had significantly worse pathological response and recurrence-free survival. Additionally, low mtDNA copy number was associated with resistance to chemotherapy in vitro and in vivo. mtDNA controlled MMP, and MMP depolarization induced EMT. Depletion of mtDNA and low MMP induced DNA methylation via a DNA methylation transcription factor (DNMT), and a DNMT inhibitor suppressed EMT and improved chemotherapy sensitivity in mtDNA-depleted ESCC cells, as shown by in vitro and in vivo assays.
Conclusion
This study showed that decreased mtDNA copy number induced EMT via modulation of MMP and DNA methylation in ESCC. Therapeutic strategies increasing mtDNA copy number and DNMT inhibitors may be effective in preventing EMT and chemosensitivity resistance.
Journal Article
Jag1/2 maintain esophageal homeostasis and suppress foregut tumorigenesis by restricting the basal progenitor cell pool
2024
Basal progenitor cells are crucial for maintaining foregut (the esophagus and forestomach) homeostasis. When their function is dysregulated, it can promote inflammation and tumorigenesis. However, the mechanisms underlying these processes remain largely unclear. Here, we employ genetic mouse models to reveal that Jag1/2 regulate esophageal homeostasis and foregut tumorigenesis by modulating the function of basal progenitor cells. Deletion of Jag1/2 in mice disrupts esophageal and forestomach epithelial homeostasis. Mechanistically, Jag1/2 deficiency impairs activation of Notch signaling, leading to reduced squamous epithelial differentiation and expansion of basal progenitor cells. Moreover, Jag1/2 deficiency exacerbates the deoxycholic acid (DCA)-induced squamous epithelial injury and accelerates the initiation of squamous cell carcinoma (SCC) in the forestomach. Importantly, expression levels of JAG1/2 are lower in the early stages of human esophageal squamous cell carcinoma (ESCC) carcinogenesis. Collectively, our study demonstrates that Jag1/2 are important for maintaining esophageal and forestomach homeostasis and the onset of foregut SCC.
Dysregulation of basal progenitor cells induces esophageal tumorigenesis but the underlying mechanism is less explored. Here, the authors show that Jag1/2 deficiency promotes expansion of basal progenitor cells, leading to reduced squamous epithelial differentiation and enhanced formation of squamous cell carcinoma in the foregut.
Journal Article
Downregulation of chemokine (C-C motif) ligand 5 induced by a novel 8-hydroxyquinoline derivative (91b1) suppresses tumor invasiveness in esophageal carcinoma
by
Zhou, Yuanyuan
,
Lam, Alfred King-Yin
,
Huang, Wolin
in
chemokine (C-C motif) ligand 5
,
Chemokines
,
Chemotherapy
2024
Esophageal squamous cell carcinoma (ESCC) is a particularly aggressive form of cancer with high mortality. In the present study, a novel 8-hydroxyquinoline derivative (91b1) was investigated for its anticancer activities in ESCC along with its associated mechanisms. The in vitro cytotoxic effect of 91b1 were evaluated across five ESCC cell lines using MTS assay, with cisplatin serving as a comparative standard. Changes in gene expression profile were identified by cDNA microarray and further validated by qualitative PCR and immunostaining. Additionally, protein levels of the most notably downregulated target in archival ESCC samples were also studied. 91b1 demonstrated comparable anticancer effect with cisplatin. Notably, chemokine ligand 5 (Ccl5) was identified as the most substantially downregulated gene, with its suppression at both mRNA and protein expression in ESCC cells, exhibiting a dose-dependent manner. The recombinant human protein of CCL5 enhanced the invasion of ESCC cells using the Transwell assay. The upregulation of CCL5 protein was also detected in 50% of ESCC cell lines. CCL5 was also overexpressed in 76.9% of ESCC specimens. The overall results indicated that 91b1 could effectively induce anticancer effect on ESCC cells through downregulating CCL5 expression with suppression of tumor invasion. Overall, these findings suggested that 91b1 effectively inhibited ESCC cell proliferation and tumor invasion by downregulating CCL5 expression, highlighting its potential as a therapeutic agent for ESCC treatment.
Journal Article
SOX2 drives esophageal squamous carcinoma by reprogramming lipid metabolism and histone acetylation landscape
2025
SOX2 is a potent oncodriver for various squamous cancers, but the underlying mechanism is largely unknown. Here we uncover a role of SOX2 in promoting global histone acetylation in esophageal squamous cancer cells (ESCCs). Mechanistic studies reveal that SOX2 promotes global histone acetylation in an AKT-independent manner, and does so by promoting histone acetylation at both SOX2 binding and non-SOX2 binding sites, and accounts for the formation of about half of the super-enhancers. Combined metabolic and transcriptional analyses reveal two mechanisms by which SOX2 enhances global histone acetylation: promoting the expression of multiple histone acetyltransferases and reducing acetyl-CoA consuming fatty acid synthesis in part by repressing the expression of ACSL5. Finally, SOX2 expression correlates negatively with ACSL5 and positively with histone acetylation in clinical esophageal squamous tumors. Altogether, our study uncovers a role of SOX2 in reprogramming lipid metabolism and driving histone hyperacetylation and super-enhancer function, providing mechanistic insights of SOX2 acting as a potent oncodriver.
SOX2 is known to be oncogenic in squamous cell carcinomas. Here, the authors demonstrate that SOX2 promotes global histone acetylation and reprograms lipid metabolism in esophageal squamous cell carcinoma cells.
Journal Article