Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,616
result(s) for
"Carcinoma - microbiology"
Sort by:
The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review
by
Deng, Dongmei
,
Merali, Nabeel
,
Frampton, Adam E.
in
Adenocarcinoma
,
Bacteria
,
Bacteroidaceae Infections - complications
2024
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Journal Article
Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota
2018
ObjectiveGastric carcinoma development is triggered by Helicobacter pylori. Chronic H. pylori infection leads to reduced acid secretion, which may allow the growth of a different gastric bacterial community. This change in the microbiome may increase aggression to the gastric mucosa and contribute to malignancy. Our aim was to evaluate the composition of the gastric microbiota in chronic gastritis and in gastric carcinoma.DesignThe gastric microbiota was retrospectively investigated in 54 patients with gastric carcinoma and 81 patients with chronic gastritis by 16S rRNA gene profiling, using next-generation sequencing. Differences in microbial composition of the two patient groups were assessed using linear discriminant analysis effect size. Associations between the most relevant taxa and clinical diagnosis were validated by real-time quantitative PCR. Predictive functional profiling of microbial communities was obtained with PICRUSt.ResultsThe gastric carcinoma microbiota was characterised by reduced microbial diversity, by decreased abundance of Helicobacter and by the enrichment of other bacterial genera, mostly represented by intestinal commensals. The combination of these taxa into a microbial dysbiosis index revealed that dysbiosis has excellent capacity to discriminate between gastritis and gastric carcinoma. Analysis of the functional features of the microbiota was compatible with the presence of a nitrosating microbial community in carcinoma. The major observations were confirmed in validation cohorts from different geographic origins.ConclusionsDetailed analysis of the gastric microbiota revealed for the first time that patients with gastric carcinoma exhibit a dysbiotic microbial community with genotoxic potential, which is distinct from that of patients with chronic gastritis.
Journal Article
Helicobacter pylori Eradication Prevents Metachronous Gastric Neoplasms after Endoscopic Resection of Gastric Dysplasia
by
Da Hyun Jung
,
Jun Chul Park
,
Yong Chan Lee
in
Aged
,
Amoxicillin
,
Amoxicillin - therapeutic use
2015
There is insufficient data about the role of eradication of H. pylori after endoscopic resection (ER) for gastric dysplasia. The aim was to investigate the benefit of H. pylori eradication after ER in patients with gastric dysplasia to prevent metachronous gastric neoplasms.
We retrospectively reviewed 1872 patients who underwent ER of gastric dysplasia. We excluded patients with a follow-up period of <2 years or who had not undergone tests for active H. pylori infection. A total of 282 patients were enrolled. The patients were categorized into those without active H. pylori infection (H. pylori-negative group, n = 124), those who successfully underwent H. pylori eradication (eradicated group, n = 122), and those who failed or did not undergo H. pylori eradication (persistent group, n = 36).
Metachronous recurrence was diagnosed in 36 patients, including 19 in the H. pylori-negative group, 10 in the eradicated group, and 7 in the persistent group. The cumulative incidence of metachronous recurrence was significantly lower in the H. pylori-eradicated group in comparison with either of the H. pylori-persistent (non-eradicated or failed) groups (p = 0.039). Similarly, the incidence of metachronous recurrence was significantly lower in the H. pylori-eradicated group compared with the H. pylori-negative group (p = 0.041).
Successful H. pylori eradication may reduce the development of metachronous gastric neoplasms after ER in patients with gastric dysplasia.
Journal Article
Mendelian randomization study reveals causal association between skin microbiome and skin cancers
2025
Increasing evidence indicates a link between the skin microbiome and different types of skin cancer, but it is still uncertain if this connection is causal. This study aimed to investigate the causal relationship between genetically predicted skin microbiome and skin cancer, including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (CSCC), cutaneous melanoma (CM), and actinic keratosis (AK). A two-sample Mendelian randomization (MR) analysis was conducted using summary datasets of public genome-wide association study (GWAS) statistics. Multiple methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weighted mode, and robust adjusted profile score (RAPS), were applied. Sensitivity analyses were performed to assess the robustness of the results, and a reverse MR analysis was conducted to evaluate potential reverse causality. A total of 1224 SNPs were selected as instrumental variables (IVs) for 78 genus-level skin microbes. Six genus-level skin microbes exhibited suggestive associations with skin cancer. Sensitivity and horizontal pleiotropy analyses confirmed the robustness of these relationships. Reverse MR analysis showed no evidence of reverse causality between the identified skin microbiota taxa and skin cancers. This study identifies potential causal relationships between skin microbiota and four skin cancers. Additional studies are needed to confirm these results and elucidate the underlying mechanisms.
Journal Article
Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis
by
Nowak, Jonathan A
,
Milner, Danny A
,
Freeman, Gordon J
in
Aged
,
Biomarkers, Tumor - genetics
,
Carcinoma - genetics
2016
ObjectiveAccumulating evidence links the intestinal microbiota and colorectal carcinogenesis. Fusobacterium nucleatum may promote colorectal tumour growth and inhibit T cell-mediated immune responses against colorectal tumours. Thus, we hypothesised that the amount of F. nucleatum in colorectal carcinoma might be associated with worse clinical outcome.DesignWe used molecular pathological epidemiology database of 1069 rectal and colon cancer cases in the Nurses’ Health Study and the Health Professionals Follow-up Study, and measured F. nucleatum DNA in carcinoma tissue. Cox proportional hazards model was used to compute hazard ratio (HR), controlling for potential confounders, including microsatellite instability (MSI, mismatch repair deficiency), CpG island methylator phenotype (CIMP), KRAS, BRAF, and PIK3CA mutations, and LINE-1 hypomethylation (low-level methylation).ResultsCompared with F. nucleatum-negative cases, multivariable HRs (95% CI) for colorectal cancer-specific mortality in F. nucleatum-low cases and F. nucleatum-high cases were 1.25 (0.82 to 1.92) and 1.58 (1.04 to 2.39), respectively, (p for trend=0.020). The amount of F. nucleatum was associated with MSI-high (multivariable odd ratio (OR), 5.22; 95% CI 2.86 to 9.55) independent of CIMP and BRAF mutation status, whereas CIMP and BRAF mutation were associated with F. nucleatum only in univariate analyses (p<0.001) but not in multivariate analysis that adjusted for MSI status.ConclusionsThe amount of F. nucleatum DNA in colorectal cancer tissue is associated with shorter survival, and may potentially serve as a prognostic biomarker. Our data may have implications in developing cancer prevention and treatment strategies through targeting GI microflora by diet, probiotics and antibiotics.
Journal Article
Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota
by
Arthur, Janelle C.
,
Jobin, Christian
,
Tomkovich, Sarah
in
Animal tumors. Experimental tumors
,
Animals
,
Azoxymethane - toxicity
2012
Inflammation alters host physiology to promote cancer, as seen in colitis-associated colorectal cancer (CRC). Here, we identify the intestinal microbiota as a target of inflammation that affects the progression of CRC. High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10—deficient (Il10⁻ / ⁻) mice. Monocolonization with the commensal Escherichia coli NC101 promoted invasive carcinoma in azoxymethane (AOM)—treated Il10⁻ / ⁻ mice. Deletion of the polyketide synthase (pks) genotoxic island from E. coli NC101 decreased tumor multiplicity and invasion in AOM/Il10⁻ / ⁻ mice, without altering intestinal inflammation. Mucosa-associated pks⁺ E. coli were found in a significantly high percentage of inflammatory bowel disease and CRC patients. This suggests that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities.
Journal Article
Tumor-colonized Streptococcus mutans metabolically reprograms tumor microenvironment and promotes oral squamous cell carcinoma
2024
Background
Oral squamous cell carcinoma (OSCC) remains a major death cause in head and neck cancers, but the exact pathogenesis mechanisms of OSCC are largely unclear.
Results
Saliva derived from OSCC patients but not healthy controls (HCs) significantly promotes OSCC development and progression in rat models, and metabolomic analyses reveal saliva of OSCC patients but not HCs and OSCC tissues but not adjacent non-tumor tissues contain higher levels of kynurenic acid (KYNA). Furthermore, large amounts of
Streptococcus mutans
(
S. mutans
) colonize in OSCC tumor tissues, and such intratumoral
S. mutans
mediates KYNA overproductions
via
utilizing its protein antigen c (PAc). KYNA shifts the cellular types in the tumor microenvironment (TME) of OSCC and predominantly expedites the expansions of S100a8
high
S100a9
high
neutrophils to produce more interleukin 1β (IL-1β), which further expands neutrophils and induces CD8 + T cell exhaustion in TME and therefore promotes OSCC. Also, KYNA compromises the therapeutic effects of programmed cell death ligand 1 (PD-L1) and IL-1β blockades in oral carcinogenesis model. Moreover, KYNA-mediated immunosuppressive program and aryl hydrocarbon receptor (AHR) expression correlate with impaired anti-tumor immunity and poorer survival of OSCC patients.
Conclusions
Thus, aberration of oral microbiota and intratumoral colonization of specific oral bacterium such as
S. mutans
may increase the production of onco-metabolites, exacerbate the oral mucosal carcinogenesis, reprogram a highly immunosuppressive TME, and promote OSCC, highlighting the potential of interfering with oral microbiota and microbial metabolism for OSCC preventions and therapeutics.
5ViVJ5sCbraGF_6Zi1UXoj
Video Abstract
Journal Article
Profiling the Urinary Microbiota in Male Patients With Bladder Cancer in China
2018
Mounting evidence indicates that microbiome plays an important role in the development and progression of cancer. The dogma that urine in healthy individuals must be sterile has been overturned. Dysbiosis of the urinary microbiome has been revealed responsible for various urological disorders, including prostate cancer. The link between chronic inflammation, microbiome and solid tumors has been established for various neoplastic diseases. However, a detailed and comprehensive analysis of urinary microenvironment of bladder cancer has not been yet reported. We performed this study to characterize the potential urinary microbial community possibly associated with bladder cancer. Mid-stream urine was collected from 31 male patients with bladder cancer and 18 non-neoplastic controls. DNA was extracted from urine pellet samples and processed for high throughput 16S rRNA amplicon sequencing of the V4 region using Illumina MiSeq. Sequencing reads were filtered using QIIME and clustered using UPARSE. We observed increased bacterial richness (Observed Species, Chao 1 and Ace indexes; cancer vs. control; 120.0 vs. 56.0; 134.5 vs. 68.3; and 139.6 vs. 72.9, respectively), enrichment of some bacterial genera (e.g.,
) and decrease of some bacterial genera (e.g.,
, and
) in cancer group when compared to non-cancer group. Significant difference in beta diversity was found between cancer and non-cancer group, among different risk level, but not among different tumor grade. Enrichment of
, and
was observed in cancer patients with high risk of recurrence and progression, which means these genera maybe potential biomarkers for risk stratification. The PICRUSt showed that various functional pathways were enriched in cancer group, including
infection, glycerolipid metabolism and retinol metabolism. To our knowledge, we performed the most comprehensive study to date to characterize the urinary microbiome associated with bladder cancer. A better understanding of the role of microbiome in the development and progression of bladder cancer could pave a new way for exploring new therapeutic options and biomarkers.
Journal Article
Bacterial Diversity Correlates with Overall Survival in Cancers of the Head and Neck, Liver, and Stomach
by
Hernandez, Brenda Y.
,
Rodriguez, Rebecca M.
,
Menor, Mark
in
Adenocarcinoma - microbiology
,
Adenocarcinoma - mortality
,
African Americans
2021
One in five cancers is attributed to infectious agents, and the extent of the impact on the initiation, progression, and disease outcomes may be underestimated. Infection-associated cancers are commonly attributed to viral, and to a lesser extent, parasitic and bacterial etiologies. There is growing evidence that microbial community variation rather than a single agent can influence cancer development, progression, response to therapy, and outcome. We evaluated microbial sequences from a subset of infection-associated cancers—namely, head and neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA). A total of 470 paired tumor and adjacent normal samples were analyzed. In STAD, concurrent presence of EBV and Selemonas sputigena with a high diversity index were associated with poorer survival (HR: 2.23, 95% CI 1.26–3.94, p = 0.006 and HR: 2.31, 95% CI 1.1–4.9, p = 0.03, respectively). In LIHC, lower microbial diversity was associated with poorer overall survival (HR: 2.57, 95% CI: 1.2, 5.5, p = 0.14). Bacterial within-sample diversity correlates with overall survival in infection-associated cancers in a subset of TCGA cohorts.
Journal Article
Porphyromonas gingivalis suppresses oral squamous cell carcinoma progression by inhibiting MUC1 expression and remodeling the tumor microenvironment
2024
Bacteria are the causative agents of various infectious diseases; however, the anti‐tumor effect of some bacterial species has attracted the attention of many scientists. The human oral cavity is inhabited by abundant and diverse bacterial communities and some of these bacterial communities could play a role in tumor suppression. Therefore, it is crucial to find oral bacterial species that show anti‐tumor activity on oral cancers. In the present study, we found that a high abundance of Porphyromonas gingivalis, an anaerobic periodontal pathogen, in the tumor microenvironment (TME) was positively associated with the longer survival of patients with oral squamous cell carcinoma (OSCC). An in vitro assay confirmed that P. gingivalis accelerated the death of OSCC cells by inducing cell cycle arrest at the G2/M phase, thus exerting its anti‐tumor effect. We also found that P. gingivalis significantly decreased tumor growth in a 4‐nitroquinoline‐1‐oxide‐induced in situ OSCC mouse model. The transcriptomics data demonstrated that P. gingivalis suppressed the biosynthesis of mucin O‐glycan and other O‐glycans, as well as the expression of chemokines. Validation experiments further confirmed the downregulation of mucin‐1 (MUC1) and C‐X‐C motif chemokine 17 (CXCL17) expression by P. gingivalis treatment. Flow cytometry analysis showed that P. gingivalis successfully reversed the immunosuppressive TME, thereby suppressing OSCC growth. In summary, the findings of the present study indicated that the rational use of P. gingivalis could serve as a promising therapeutic strategy for OSCC. The authors investigated the suppression of oral squamous cell carcinoma (OSCC) growth by Porphyromonas gingivalis. The bacterium downregulates MUC1 and CXCL17 expression, which contributes to the reversal of the immunosuppressive tumor microenvironment (TME), leading to OSCC growth inhibition.
Journal Article