Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,010 result(s) for "Cardiovascular Abnormalities - pathology"
Sort by:
Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib-induced cardiotoxicity in patients with HER2-positive early-stage breast cancer: a NeoALTTO sub-study (BIG 1-06)
BackgroundBiomarkers of cardiac damages, such as troponin T (TnT) and the amino-terminal fragment of brain natriuretic peptide (NT-proBNP), may be useful as early predictors of cardiac dysfunction. The role of these biomarkers in patients receiving lapatinib and/or trastuzumab before anthracyclines is unknown. This study explores TnT and NT-proBNP as predictors of early cardiac toxicity in neoadjuvant breast cancer patients.MethodsThis sub-study of the NEOALTTO trial tested if changes in the levels of TnT and NT-proBNP occurred after 2 weeks of anti-HER2 therapy (lapatinib, trastuzumab or their combination) alone and/or after 18 weeks of anti-HER2 therapy plus weekly paclitaxel.Results173 and 172 were tested at all three timepoints for NT-proBNP and TnT, respectively. The incidence of biomarker elevation was overall low at all timepoints for all the three treatment arms. A total of 13 CEs in 11 patients occurred. Biomarker elevations in patients with CEs were very rare; only one patient with subsequent CE had a NT-proBNP elevation at baseline and at week 2.ConclusionThese results suggest that TnT and proBNP may not be useful as early predictors of cardiac toxicity in anthracycline-naïve patients receiving trastuzumab and/or lapatinib.
CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation
Purpose Internationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier ( http://www.cardioclassifier.org ), a semiautomated decision-support tool for inherited cardiac conditions (ICCs). Methods CardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules. Results We benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher’s P  = 1.1  ×  10 −18 ), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data. Conclusion CardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.
Fetal Vascular Malperfusion
- Fetal vascular malperfusion, also known as fetal thrombotic vasculopathy, remains an underrecognized pathologic finding and should be noted during placental evaluation. - To review histologic findings, gain familiarity with the updated terminology, and to recognize important clinical associations with this entity. - University of Michigan cases, PubMed search, multiple review articles including recent placental workshop group consensus statement, and selected book chapters. - Multiple histologic patterns of fetal vascular malperfusion have been described including thrombosis, avascular villi, villous stromal-vascular karyorrhexis, intramural fibrin thrombi, and stem villous vascular obliteration. Various underlying etiologies can be involved in fetal vascular malperfusion. Cord lesions including abnormal insertion, length, and coiling are important causes. Maternal vascular malperfusion such as preeclampsia, hypercoagulable states, lupus anticoagulant, and sometimes diabetes have been associated with this condition. Fetal cardiac dysfunction/malformations and severe fetal inflammatory response in the setting of ascending intrauterine infection have also been attributed to this important finding. Fetal vascular malperfusion has been implicated in several significant and sometimes devastating clinical associations; these include intrauterine growth restriction, poor perinatal outcome, fetal demise, and neurodevelopmental sequelae. A diagnostic challenge may be encountered in cases with prior intrauterine fetal death, since degenerative changes post demise result in a similar histomorphologic picture. The diffuse versus the focal nature of the lesions may help in the distinction.
The Influence of Occupational Noise Exposure on Cardiovascular and Hearing Conditions among Industrial Workers
This study was conducted to estimate the current prevalence of hypertension, cardiovascular condition and hearing difficulty of workers exposure to occupational noise, and to analyze any associations between these abnormal signs and occupational noise exposure. The subjects included 5205 noise-exposed workers. Workers with high noise exposure were more likely to have a higher threshold value than low exposure ones ( P  < 0.05). Subjects in the high exposure group had a significantly higher risk of hypertension and hearing loss than the ones in low exposure group. Between the ages of 30 and 45, high-level occupational noise exposure led to a significantly raising risk of both hypertension ( Adjusted OR  = 1.59, 95% CI , 1.19–2.11) and hearing loss ( Adjusted OR  = 1.28, 95% CI , 1.03–1.60) when comparing to low-level noise exposure. In male workers, the prevalence of hearing difficulty in high exposure group was approximately 1.2 times worse than in low group ( P  = 0.006). In addition, exposure to high noise level demonstrated a significant association with hypertension and hearing loss when the duration time to occupational noise was longer than 10 years. Hypertension and hearing difficulty is more prevalent in the noise-exposed group (higher than 85 dB[A]). Steps to reduce workplace noise levels and to improve workplace-based health are thus urgently needed.
Peripheral Vascular Abnormalities in Anorexia Nervosa: A Psycho-Neuro-Immune-Metabolic Connection
Immune, neuroendocrine, and autonomic nervous system dysregulation in anorexia nervosa lead to cardiovascular complications that can potentially result in increased morbidity and mortality. It is suggested that a complex non-invasive assessment of cardiovascular autonomic regulation—cardiac vagal control, sympathetic vascular activity, and cardiovascular reflex control—could represent a promising tool for early diagnosis, personalized therapy, and monitoring of therapeutic interventions in anorexia nervosa particularly at a vulnerable adolescent age. In this view, we recommend to consider in the diagnostic route, at least in the subset of patients with peripheral microvascular symptoms, a nailfold video-capillaroscopy as an easy not invasive tool for the early assessing of possible cardiovascular involvement.
Developmental vascular remodeling defects and postnatal kidney failure in mice lacking Gpr116 (Adgrf5) and Eltd1 (Adgrl4)
GPR116 (ADGRF5) and ELTD1 (ADGRL4) belong to different subfamilies of the adhesion G-protein-coupled receptor group but are both expressed in endothelial cells. We therefore analyzed their functions in mice lacking these receptors. While loss of GPR116 or ELTD1 alone had no obvious effect on cardiovascular or kidney function, mice lacking both, GPR116 and ELTD1, showed malformations of the aortic arch arteries and the cardiac outflow tract leading to perinatal lethality in about 50% of the mutants. In addition to cardiovascular malformations, surviving mice developed renal thrombotic microangiopathy as well as hemolysis and splenomegaly, and their lifespan was significantly reduced. Loss of GPR116 and ELTD1 specifically in endothelial cells or neural crest-derived cells did not recapitulate any of the phenotypes observed in GPR116-ELTD1 double deficient mice, indicating that loss of GPR116 and ELTD1 expressed by other cells accounts for the observed cardiovascular and renal defects.
Common mechanism underlies repeated evolution of extreme pollution tolerance
Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation, which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid, repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations harboured genotypes that enabled adaptation to twentieth-century industrial pollutants.
An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation
The cardiac outflow tract develops as a result of a complex interplay among several cell types, including cardiac neural crest cells, endothelial cells, and cardiomyocytes. In both humans and mice, mutations in components of the Notch signaling pathway result in congenital heart disease characterized by cardiac outflow tract defects. However, the specific cell types in which Notch functions during cardiovascular development remain to be defined. In addition, in vitro studies have provided conflicting data regarding the ability of Notch to promote or inhibit smooth muscle differentiation, while the physiological role for Notch in smooth muscle formation during development remains unclear. In this study, we generated mice in which Notch signaling was specifically inactivated in derivatives of the neural crest. These mice exhibited cardiovascular anomalies, including aortic arch patterning defects, pulmonary artery stenosis, and ventricular septal defects. We show that Notch plays a critical, cell-autonomous role in the differentiation of cardiac neural crest precursors into smooth muscle cells both in vitro and in vivo, and we identify specific Notch targets in neural crest that are implicated in this process. These results provide a molecular and cellular framework for understanding the role of Notch signaling in the etiology of congenital heart disease.
Evaluating 3D-printed models of coronary anomalies: a survey among clinicians and researchers at a university hospital in the UK
ObjectiveTo evaluate the feasibility of three-dimensional (3D) printing models of coronary artery anomalies based on cardiac CT data and explore their potential for clinical applications.DesignCardiac CT datasets of patients with various coronary artery anomalies (n=8) were retrospectively reviewed and processed, reconstructing detailed 3D models to be printed in-house with a desktop 3D printer (Form 2, Formlabs) using white resin.SettingA University Hospital (division of cardiology) in the UK.ParticipantsThe CT scans, first and then 3D-printed models were presented to groups of clinicians (n=8) and cardiovascular researchers (n=9).InterventionParticipants were asked to assess different features of the 3D models and to rate the models’ overall potential usefulness.Outcome measuresModels were rated according to clarity of anatomical detail, insight into the coronary abnormality, overall perceived usefulness and comparison to CT scans. Assessment of model characteristics used Likert-type questions (5-point scale from ‘strongly disagree’ to ‘strongly agree’) or a 10-point rating (from 0, lowest, to 10, highest). The questionnaire included a feedback form summarising overall usefulness. Participants’ imaging experience (in a number of years) was also recorded.ResultsAll models were reconstructed and printed successfully, with accurate details showing coronary anatomy (eg, anomalous coronary artery, coronary roofing or coronary aneurysm in a patient with Kawasaki syndrome). All clinicians and researchers provided feedback, with both groups finding the models helpful in displaying coronary artery anatomy and abnormalities, and complementary to viewing 3D CT scans. The clinicians’ group, who had substantially more imaging expertise, provided more enthusiastic ratings in terms of models’ clarity, usefulness and future use on average.Conclusions3D-printed heart models can be feasibly used to recreate coronary artery anatomy and enhance understanding of coronary abnormalities. Future studies can evaluate their cost-effectiveness, as well as potentially explore other printing techniques and materials.
Blood flow reprograms lymphatic vessels to blood vessels
Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.