Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
282
result(s) for
"Carps - virology"
Sort by:
Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing
2017
Background
Grass carp is an important farmed fish in China that is affected by serious disease, especially hemorrhagic disease caused by grass carp reovirus (GCRV). The mechanism underlying the hemorrhagic symptoms in infected fish remains to be elucidated. Although GCRV can be divided into three distinct subtypes, differences in the pathogenesis and host immune responses to the different subtypes are still unclear. The aim of this study was to provide a comprehensive insight into the grass carp response to different GCRV subtypes and to elucidate the mechanism underlying the hemorrhagic symptoms.
Results
Following infection of grass carp, GCRV-I was associated with a long latent period and low mortality (42.5%), while GCRV-II was associated with a short latent period and high mortality (81.4%). The relative copy number of GCRV-I remained consistent or decreased slightly throughout the first 7 days post-infection, whereas a marked increase in GCRV-II high copy number was detected at 5 days post-infection. Transcriptome sequencing revealed 211 differentially expressed genes (DEGs) in Group I (66 up-regulated, 145 down-regulated) and 670 (386 up-regulated, 284 down-regulated) in Group II. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed significant enrichment in the terms or pathways involved in immune responses and correlating with blood or platelets. Most of the DEGs in Group I were also present in Group II, although the expression profiles differed, with most DEGs showing mild changes in Group I, while marked changes were observed in Group II, especially the interferon-related genes. Many of the genes involved in the complement pathway and coagulation cascades were significantly up-regulated at 7 days post-infection in Group II, suggesting activation of these pathways.
Conclusion
GCRV-I is associated with low virulence and a long latent period prior to the induction of a mild host immune response, whereas GCRV-II is associated with high virulence, a short latent period and stimulates a strong and extensive host immune response. The complement and coagulation pathways are significantly activated at 7 days post-infection, leading to the endothelial cell and blood cell damage that result in hemorrhagic symptoms.
Journal Article
Insights into the Antiviral Immunity against Grass Carp (Ctenopharyngodon idella) Reovirus (GCRV) in Grass Carp
2015
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Journal Article
Structural and Functional Characteristics of TLR19 in Barbel Chub Compared to TLR19 in Grass Carp
2025
The hybrid offspring of barbel chub Squaliobarbus curriculus and grass carp Ctenopharyngodon idella exhibit stronger resistance to the grass carp reovirus (GCRV) infection than grass carp. Toll-like receptors (TLRs) play indispensable roles in the antiviral immunity of fish. In this study, the structures and antiviral immune functions of barbel chub TLR19 (ScTLR19) and grass carp TLR19 (CiTLR19) were compared. The amino acid sequence of ScTLR19 shared high similarity (97.4%) and identity (94.0%) with that of CiTLR19, and a phylogenetic tree revealed the close evolutionary relationship between ScTLR19 and CiTLR19. Protein domain composition analyses showed that ScTLR19 possessed an additional leucine-rich repeat (designated as LRR9) located at amino acid positions 654–677 in the extracellular region, which was absent in CiTLR19. Multiple sequence alignment and three-dimensional structure comparison also indicated that the extracellular regions of ScTLR19 and CiTLR19 exhibited greater differences compared to their intracellular regions. Molecular docking revealed that the extracellular region of ScTLR19 (docking score = −512.31) showed a stronger tendency for binding with polyI:C, compared to the extracellular region of CiTLR19 (docking score = −474.90). Replacing LRR9 in ScTLR19 with the corresponding amino acid sequence from CiTLR19 reduced the binding activity of ScTLR19 to polyI:C, as confirmed by an ELISA. Moreover, overexpression experiments suggested that ScTLR19 could regulate both the IRF3–TRIF and IRF3–MyD88 signaling pathways during GCRV infection, while CiTLR19 only regulated the IRF3–MyD88 signaling pathway. Importantly, replacing LRR9 in ScTLR19 with the corresponding amino acid sequence from CiTLR19 altered the expression regulation on IRF3, MyD88, and TRIF during GCRV infection. These findings collectively reveal the structural and functional differences between ScTLR19 and CiTLR19, and they may provide data to support a deeper understanding of the molecular mechanisms underlying the differences in GCRV resistance between barbel chub and grass carp, as well as the genetic basis for the heterosis of GCRV resistance in their hybrid offspring.
Journal Article
Development of multi epitope subunit vaccines against emerging carp viruses Cyprinid herpesvirus 1 and 3 using immunoinformatics approach
2024
Cyprinid herpesvirus
is a causative agent of a destructive disease in common and koi carp (
Cyprinus carpio
), which leads to substantial global financial losses in aquaculture industries. Among the strains of
C. herpesvirus
,
C. herpesvirus
1 (CyHV-1) and
C. herpesvirus
3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.
Journal Article
Virus susceptibility of a new cell line derived from the muscle of koi (Cyprinus carpio koi)
2024
In this study, a continuous cell line (KM cells) derived from koi (Cyprinus carpio koi) muscle was established and characterized. The KM cells were subcultured for more than 70 passages and showed high viability after long-term cryopreservation. The KM cell line was optimally cultured in medium 199 containing 10% foetal bovine serum at 25°C. A chromosome analysis indicated that the cell line remained diploid, with a mean chromosome count of 100. DNA sequencing and comparative analysis of the 16S rRNA and cytochrome oxidase I gene sequences showed that the KM cell line originated from koi. In transfection experiments using the plasmid pEGFP, KM cells demonstrated a high level of transfection efficiency, suggesting their potential for use in foreign gene expression studies. Inoculation with spring viraemia of carp virus (SVCV) resulted in a substantial cytopathic effect, and the level of production of SVCV in KM cells was higher than that in the epithelioma papulosum cyprinid (EPC) cell line that is normally used to produce the virus. However, no cytopathic effect was observed when these cells were inoculated with koi herpesvirus, carp oedema virus, or grass carp reovirus. These observations suggest that the newly established KM cell line will be a valuable tool for investigating the pathogenesis of infection with spring viraemia of carp virus.
Journal Article
Poly (I:C)-Induced microRNA-30b-5p Negatively Regulates the JAK/STAT Signaling Pathway to Mediate the Antiviral Immune Response in Silver Carp (Hypophthalmichthys molitrix) via Targeting CRFB5
2024
In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.
Journal Article
Sialic acid serves as a functional receptor for grass carp reovirus
2025
Grass carp reovirus (GCRV) causes hemorrhagic disease and substantial economic losses in the aquaculture of grass carp ( Ctenopharyngodon idella ), a commercially important fish species in China. Although viral entry depends on interactions between viral proteins and host receptors, the specific host molecules mediating this process have not been fully elucidated. Here, we identify cell surface sialic acid (SA) as a critical functional receptor for GCRV. Enzymatic removal of SA markedly impaired viral attachment and infection. Competitive inhibition using SA-binding lectins or soluble SA confirmed that GCRV targets SA moieties on host cells. Genetic knockdown of SA biosynthesis attenuated viral binding and replication, whereas overexpression of SA pathway genes enhanced susceptibility. Surface plasmon resonance demonstrated direct binding between GCRV capsid proteins and soluble SA, and mutational analysis identified key amino acid residues involved. Notably, pretreatment of GCRV with soluble SA significantly improved fish survival and reduced virus-induced immune overactivation in vivo . To assess receptor specificity, parallel experiments using Rana grylio virus (RGV), a phylogenetically unrelated ranavirus , showed that RGV infection was unaffected by SA-targeted interventions, highlighting the specificity of SA utilization by GCRV. Together, these findings identify SA as a functional and specific receptor for GCRV, offering new insights into virus-host interactions and potential antiviral strategies in aquaculture.
Journal Article
Autophagy Inhibits Grass Carp Reovirus (GCRV) Replication and Protects Ctenopharyngodon idella Kidney (CIK) Cells from Excessive Inflammatory Responses after GCRV Infection
2020
Autophagy is an essential and highly conserved process in mammals, which is critical to maintaining physiological homeostasis, including cell growth, development, repair, and survival. However, the understanding of autophagy in fish virus replication is limited. In this study, we found that grass carp reovirus (GCRV) infection stimulated autophagy in the spleen of grass carp (Ctenopharyngodon idella). Moreover, both Western blot (WB) analysis and fluorescent tracer tests showed that GCRV infection induced the enhancement of autophagy activation in Ctenopharyngodon idella kidney (CIK) cells. Autophagy inducer rapamycin and autophagy inhibitor 3-MA pretreatment can inhibit and promote the proliferation of GCRV, respectively. In addition, grass carp autophagy-related gene 5 (CiATG5)-induced autophagy, as well as rapamycin, showed effects on GCRV replication in CIK cells. Transcriptome analysis revealed that the total number of differentially expressed genes (DEGs) in CiATG5 overexpression groups was less than that of the control during GCRV infection. Enrichment analysis showed that CiATG5 overexpression induced the enhancement of autophagy, lysosome, phagosome, and apoptosis in the early stage of GCRV infection, which led to the clearance of viruses. In the late stage, steroid biosynthesis, DNA replication, terpenoid backbone biosynthesis, and carbon metabolism were upregulated, which contributed to cell survival. Moreover, signaling pathways involved in the immune response and cell death were downregulated in CiATG5 overexpression groups. Further study showed that CiATG5 repressed the expression of inflammatory response genes, including cytokines and type I interferons. Taken together, the results demonstrate that autophagy represses virus replication and attenuates acute inflammatory responses to protect cells.
Journal Article
Grass carp Trim47 restricts GCRV infection via SPRY domain-mediated autophagic degradation of nonstructural proteins and disruption of viral inclusion bodies
2025
Trim47, a TRIM C-VII subgroup protein characterized by a conserved SPRY domain, has been primarily studied for its ubiquitin-dependent roles in mammals. This study reports a paradigm-shifting finding in teleost immunology: grass carp Trim47 (gcTrim47) employs its SPRY domain to execute a novel, ubiquitin-independent antiviral pathway, selectively degrading GCRV-I nonstructural proteins NS38/NS80 via autophagy-mediated clearance. Unlike mammalian TRIMs, gcTrim47 antiviral activity is strictly dependent on its SPRY domain—devoid of RING/B-box domains critical for E3 ligase function—revealing an evolutionarily divergent mechanism where substrate-targeting specificity, not ubiquitination, drives viral replication factory (viral inclusion body, VIB) dismantling. Functional assays demonstrated that gcTrim47 overexpression in CIK cells reduced viral titers and suppressed VIB formation, with SPRY domain deletion ablating these effects. In vivo , a yeast surface-display platform presenting gcTrim47-PYD1 conferred 32.94% relative percent survival (RPS) against GCRV-II infection, the first reported use of a TRIM family protein as an antiviral immunogen in grass carp. This strategy mitigated splenic/kidney viral loads and alleviated histopathological damage, including tubular necrosis and inflammatory infiltration. The successful application of this mechanism into a yeast-based immunization strategy highlights its potential for developing novel antiviral biotherapeutics in aquaculture.
Journal Article
Preliminary study of BF/C2 on immune mechanism of grass carp against GCRV infection
2024
BF/C2
is a crucial molecule in the coagulation complement cascade pathway and plays a significant role in the immune response of grass carp through the classical, alternative, and lectin pathways during GCRV infection. In vivo experiments demonstrated that the mRNA expression levels of
BF/C2
(
A
,
B
) in grass carp positively correlated with GCRV viral replication at various stages of infection. Excessive inflammation leading to death coincided with peak levels of
BF/C2
(
A
,
B
) mRNA expression and GCRV viral replication. Correspondingly,
BF/C2
(
A
,
B
) recombinant protein, CIK cells and GCRV co-incubation experiments yielded similar findings. Therefore, 3 h (incubation period) and 9 h (death period) were selected as critical points for this study. Transcriptome sequencing analysis revealed significant differences in the expression of
BF/C2A
and
BF/C2B
during different stages of CIK infection with GCRV and compared to the blank control group (PBS). Specifically, the
BF/C2A
_3 and
BF/C2A
_9 groups exhibited 2729 and 2228 differentially expressed genes (DEGs), respectively, with 1436 upregulated and 1293 downregulated in the former, and 1324 upregulated and 904 downregulated in the latter. The
BF/C2B
_3 and
BF/C2B
_9 groups showed 2303 and 1547 DEGs, respectively, with 1368 upregulated and 935 downregulated in the former, and 818 upregulated and 729 downregulated in the latter. KEGG functional enrichment analysis of these DEGs identified shared pathways between
BF/C2A
and PBS groups at 3 and 9 h, including the C-type lectin receptor signaling pathway, protein processing in the endoplasmic reticulum, Toll-like receptor signaling pathway, Salmonella infection, apoptosis, tight junction, and adipocytokine signaling pathway. Additionally, the
BF/C2B
groups at 3 and 9 h shared pathways related to protein processing in the endoplasmic reticulum, glycolysis/gluconeogenesis, and biosynthesis of amino acids. The mRNA levels of these DEGs were validated in cellular models, confirming consistency with the sequencing results. In addition, the mRNA expression levels of these candidate genes (
mapk1
,
il1b
,
rela
,
nfkbiab
,
akt3a
,
hyou1
,
hsp90b1
,
dnajc3a
et al.) in the head kidney, kidney, liver and spleen of grass carp immune tissue were significantly different from those of the control group by
BF/C2
(
A
,
B
) protein injection in vivo. These candidate genes play an important role in the response of BF/C2 (A, B) to GCRV infection and it also further confirmed that
BF/C2
(
A
,
B
) of grass carp plays an important role in coping with GCRV infection.
Journal Article