Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
442 result(s) for "Cartilage friction"
Sort by:
Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis
Osteoarthritis (OA) is one of the most common causes of disability around the globe, especially in aging populations. The main symptoms of OA are pain and loss of motion and function of the affected joint. Hyaline cartilage has limited ability for regeneration due to its avascularity, lack of nerve endings, and very slow metabolism. Total joint replacement (TJR) has to date been used as the treatment of end-stage disease. Various joint-sparing alternatives, including conservative and surgical treatment, have been proposed in the literature; however, no treatment to date has been fully successful in restoring hyaline cartilage. The mechanical and frictional properties of the cartilage are of paramount importance in terms of cartilage resistance to continuous loading. OA causes numerous changes in the macro- and microstructure of cartilage, affecting its mechanical properties. Increased friction and reduced load-bearing capability of the cartilage accelerate further degradation of tissue by exerting increased loads on the healthy surrounding tissues. Cartilage repair techniques aim to restore function and reduce pain in the affected joint. Numerous studies have investigated the biological aspects of OA progression and cartilage repair techniques. However, the mechanical properties of cartilage repair techniques are of vital importance and must be addressed too. This review, therefore, addresses the mechanical and frictional properties of articular cartilage and its changes during OA, and it summarizes the mechanical outcomes of cartilage repair techniques.
Articular cartilage friction increases in hip joints after the removal of acetabular labrum
The acetabular labrum is believed to have a sealing function. However, a torn labrum may not effectively prevent joint fluid from escaping a compressed joint, resulting in impaired lubrication. We aimed to understand the role of the acetabular labrum in maintaining a low friction environment in the hip joint. We did this by measuring the resistance to rotation (RTR) of the hip, which reflects the friction of the articular cartilage surface, following focal and complete labrectomy. Five cadaveric hips without evidence of osteoarthritis and impingement were tested. We measured resistance to rotation of the hip joint during 0.5, 1, 2, and 3 times body weight (BW) cyclic loading in the intact hip, and after focal and complete labrectomy. Resistance to rotation, which reflects articular cartilage friction in an intact hip was significantly increased following focal labrectomy at 1–3 BW loading, and following complete labrectomy at all load levels. The acetabular labrum appears to maintain a low friction environment, possibly by sealing the joint from fluid exudation. Even focal labrectomy may result in increased joint friction, a condition that may be detrimental to articular cartilage and lead to osteoarthritis.
Lubrication mode analysis of articular cartilage using Stribeck surfaces
Lubrication of articular cartilage occurs in distinct modes with various structural and biomolecular mechanisms contributing to the low-friction properties of natural joints. In order to elucidate relative contributions of these factors in normal and diseased tissues, determination and control of lubrication mode must occur. The objectives of these studies were (1) to develop an in vitro cartilage on glass test system to measure friction coefficient, μ; (2) to implement and extend a framework for the determination of cartilage lubrication modes; and (3) to determine the effects of synovial fluid on μ and lubrication mode transitions. Patellofemoral groove cartilage was linearly oscillated against glass under varying magnitudes of compressive strain utilizing phosphate buffered saline (PBS) and equine and bovine synovial fluid as lubricants. The time-dependent frictional properties were measured to determine the lubricant type and strain magnitude dependence for the initial friction coefficient ( μ 0= μ( t→0)) and equilibrium friction coefficient ( μ eq= μ( t→∞)). Parameters including tissue-glass co-planarity, normal strain, and surface speed were altered to determine the effect of the parameters on lubrication mode via a ‘Stribeck surface’. Using this testing apparatus, cartilage exhibited biphasic lubrication with significant influence of strain magnitude on μ 0 and minimal influence on μ eq, consistent with hydrostatic pressurization as reported by others. Lubrication analysis using ‘Stribeck surfaces’ demonstrated clear regions of boundary and mixed modes, but hydrodynamic or full film lubrication was not observed even at the highest speed (50 mm/s) and lowest strain (5%).
Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation
The efforts to grow mechanically functional cartilage from human mesenchymal stem cells have not been successful. We report that clinically sized pieces of human cartilage with physiologic stratification and biomechanics can be grown in vitro by recapitulating some aspects of the developmental process of mesenchymal condensation. By exposure to transforming growth factor-β, mesenchymal stem cells were induced to condense into cellular bodies, undergo chondrogenic differentiation, and form cartilagenous tissue, in a process designed to mimic mesenchymal condensation leading into chondrogenesis. We discovered that the condensed mesenchymal cell bodies (CMBs) formed in vitro set an outer boundary after 5 d of culture, as indicated by the expression of mesenchymal condensation genes and deposition of tenascin. Before setting of boundaries, the CMBs could be fused into homogenous cellular aggregates giving rise to well-differentiated and mechanically functional cartilage. We used the mesenchymal condensation and fusion of CMBs to grow centimeter-sized, anatomically shaped pieces of human articular cartilage over 5 wk of culture. For the first time to our knowledge biomechanical properties of cartilage derived from human mesenchymal cells were comparable to native cartilage, with the Young’s modulus of >800 kPa and equilibrium friction coeffcient of <0.3. We also demonstrate that CMBs have capability to form mechanically strong cartilage–cartilage interface in an in vitro cartilage defect model. The CMBs, which acted as “lego-like” blocks of neocartilage, were capable of assembling into human cartilage with physiologic-like structure and mechanical properties.
Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid
When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants.
Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding
The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs.
Recent Advances in Understanding the Role of Cartilage Lubrication in Osteoarthritis
The remarkable lubrication properties of normal articular cartilage play an essential role in daily life, providing almost frictionless movements of joints. Alterations of cartilage surface or degradation of biomacromolecules within synovial fluid increase the wear and tear of the cartilage and hence determining the onset of the most common joint disease, osteoarthritis (OA). The irreversible and progressive degradation of articular cartilage is the hallmark of OA. Considering the absence of effective options to treat OA, the mechanosensitivity of chondrocytes has captured attention. As the only embedded cells in cartilage, the metabolism of chondrocytes is essential in maintaining homeostasis of cartilage, which triggers motivations to understand what is behind the low friction of cartilage and develop biolubrication-based strategies to postpone or even possibly heal OA. This review firstly focuses on the mechanism of cartilage lubrication, particularly on boundary lubrication. Then the mechanotransduction (especially shear stress) of chondrocytes is discussed. The following summarizes the recent development of cartilage-inspired biolubricants to highlight the correlation between cartilage lubrication and OA. One might expect that the restoration of cartilage lubrication at the early stage of OA could potentially promote the regeneration of cartilage and reverse its pathology to cure OA.
Immature bovine cartilage wear by fatigue failure and delamination
This study investigated wear damage of immature bovine articular cartilage using reciprocal sliding of tibial cartilage strips against glass or cartilage. Experiments were conducted in physiological buffered saline (PBS) or mature bovine synovial fluid (SF). A total of 63 samples were tested, of which 47 exhibited wear damage due to delamination of the cartilage surface initiated in the middle zone, with no evidence of abrasive wear. There was no difference between the friction coefficient of damaged and undamaged samples, showing that delamination wear occurs even when friction remains low under a migrating contact area configuration. No difference was observed in the onset of damage or in the friction coefficient between samples tested in PBS or SF. The onset of damage occurred earlier when testing cartilage against glass versus cartilage against cartilage, supporting the hypothesis that delamination occurs due to fatigue failure of the collagen in the middle zone, since stiffer glass produces higher strains and tensile stresses under comparable loads. The findings of this study are novel because they establish that delamination of the articular surface, starting in the middle zone, may represent a primary mechanism of failure. Based on preliminary data, it is reasonable to hypothesize that delamination wear via subsurface fatigue failure is similarly the primary mechanism of human cartilage wear under normal loading conditions, albeit requiring far more cycles of loading than in immature bovine cartilage.
Synovial fluid does not retard fluid exudation during stress-relaxation of immature bovine cartilage
Interstitial fluid load support (FLS) is a dominant mechanism of lubrication in cartilage, producing a low friction coefficient while enhancing the tissue’s load bearing capabilities. Due to its viscosity, synovial fluid (SF) may retard loss of FLS by slowing the exudation of interstitial fluid from the cartilage. This study tested this hypothesis by comparing the stress-relaxation (SRL) response of immature bovine articular cartilage immersed either in phosphate buffered saline (PBS) or in healthy mature bovine SF, under unconfined compression (fluid exudation across cut lateral tissue boundary) and indentation testing (fluid exudation across articular surface). To investigate the influence of diffusion of SF molecular constituents into cartilage, the effect of incubation time in SF on SRL was also investigated. The SRL response in unconfined compression was not significantly different in PBS versus SF when compared directly (p = 0.98) and had a slope ofm = 1.00 ± 0.04 (R2 = 0.989 ± 0.007). Samples tested in PBS exhibited characteristic relaxation times, τPBS=42.6 ± 5.3 s andτSF = 40.8 ± 4.7 s, that were not significantly different (p = 0.40). Incubation time of 24 h in SF resulted in no significant difference in the SRL response (p = 0.39, m=1.03 ± 0.12; R2=0.983 ± 0.011, andτPBS = 43.4 ± 10.7 s versusτSF = 41.5 ± 4.8 s, p = 0.59). Indentation testing showed some statistically significant, but functionally insignificant, difference in SRL responses in PBS versus SF with a slope ofm = 0.958 ± 0.060 (R2 = 0.957 ± 0.020, p = 0.029, andτPBS = 16.9 ± 2.6 s versusτSF = 19.4 ± 3.3 s, p = 0.073). Based on these results, we reject the hypothesis that healthy SF can retard the loss of FLS in cartilage due to its viscosity.
Comparison of site-specific tensile, compressive, and friction properties of human tibiofemoral joint cartilage and their relationship to degeneration
Site-specific differences in the compressive properties of tibiofemoral joint articular cartilage are well-documented, while exploration of tensile and frictional properties in humans remains limited. Thus, this study aimed to characterize and compare the tensile, compressive and frictional properties of articular cartilage across different sites of the tibiofemoral joint, and to establish relationships between these properties and cartilage degeneration. We cut human tibiofemoral joint (N = 5) cartilage surfaces into tensile testing samples (n = 155) and osteochondral plugs (n = 40) to determine the tensile, friction and compressive properties, as well as OARSI grades. We performed comparisons between sites using a linear mixed model and analyzed relationships with OARSI grade using Spearman’s rank correlation. Cartilage samples were mostly healthy: 56 % were grade 0 or 1, 26 % grade 2, and 18 % grade 3 or higher. In tension, the medial femur was more compliant and viscous compared to the lateral femur (p < 0.05). In compression, the lateral tibia exhibited a lower equilibrium modulus than both femoral condyles (p < 0.05), while the initial friction coefficient was higher in the medial tibia compared to both femoral condyles (p < 0.05). We found no significant correlation between tensile or friction properties and OARSI grade, while compressive properties deteriorated with increasing OARSI grade. The observed site-specific differences in cartilage properties in tension, compression, and friction, demonstrate adaptations to different loading experienced by the surfaces. The comprehensive set of properties presented in this study are valuable for improving future computational knee joint models and serving as a reference for tissue engineering and prosthetic implants.