Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
50 result(s) for "Cartography Computer network resources."
Sort by:
Web cartography : map design for interactive and mobile devices
\"Written for those with a basic understanding of map making, but without knowledge of Web design, this textbook explains how to create effective interaction, animation, and layouts for maps to put online or into a mobile platform. Concept driven and product free, this reference emphasizes cartographic principles for Web and mobile map design over specific software techniques. The first of its kind to address map design and layout styles for Web and mobile mapping, this book includes many examples from the real world. Labs introduce students to software used by and freely available at most universities\"-- Provided by publisher.
Participatory mapping
This book is intended for applications of online digital mapping, called mashups (or composite application), and to analyze the mapping practices in online socio-technical controversies. The hypothesis put forward is that the ability to create an online map accompanies the formation of online audience and provides support for a position in a debate on the Web.
Never lost again : the Google mapping revolution that sparked new industries and augmented our reality
\"The behind-the-scenes narrative of the creation of Google Maps and the rag-tag team that built it and changed how the world navigates\"-- Provided by publisher.
Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping
The main goal of this study was to optimize an adaptive neuro-fuzzy inference system (ANFIS) using three meta-heuristic optimization algorithms—genetic algorithm (GA), biogeography-based optimization (BBO) and simulated annealing (SA)—to prepare groundwater potential maps. The methodology was applied to the Booshehr plain, Iran. The results of optimized models were compared with ANFIS individually and three bivariate models: frequency ratio (FR), evidential belief function (EBF), and the entropy model. First, 339 wells with groundwater yield higher than 11 m3/h were selected and randomly divided into two groups. In all, 238 wells (70%) were used for training the models and 101 wells (30%) were used for testing and validating the models. Fifteen conditioning factors were selected as input parameters for the modeling. The accuracy of the groundwater potential maps for the study area was determined using root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and standard deviation of error (SD), as well as the area under the receiver operating characteristic (ROC) curve (AUC). Overall, the results demonstrated that ANFIS-GA had the highest prediction capability (AUC = 0.915) for groundwater potential mapping followed by ANFIS-BBO (0.903), entropy (0.862), FR (0.86), ANFIS-SA (0.83), ANFIS (0.82) and EBF (0.80). According to the entropy model, land-use, soil order and rainfall factors had the highest impact on groundwater potential in the study area. The results of this research show that the ANFIS models combined with meta-heuristic optimization algorithms can be a useful decision-making tool for assessment and management of groundwater resources.
A research guide to cartographic resources
The interdisciplinary uses of traditional cartographic resources and modern GIS tools allow for the analysis and discovery of information across a wide spectrum of fields. A Research Guide to Cartographic Resources navigates the numerous American and Canadian cartographic resources available in print, and online, offering researchers, academics and students with information on how to locate and access the large variety of resources, new and old. Dozens of different cartographic materials are highlighted and summarized, along with lists of map libraries and geospatial centers, and related professional associations. A Research Guide to Cartographic Resources consists of 18 chapters, two appendices, and a detailed index that includes place names, and libraries, structured in a manner consistent with most reference guides, including cartographic categories such as atlases, dictionaries, gazetteers, handbooks, maps, plans, GIS data and other related material. Almost all of the resources listed in this guide are categorized by geography down to the county level, making efficient work of the type of material required to meet the information needs of those interested in researching place-specific cartographic-related resources. Additionally, this guide will help those interested in not only developing a comprehensive collection in these subject areas, but get an understanding of what materials are being collected and housed in specific map libraries, geospatial centers and their related websites. Of particular value are the sections that offer directories of cartographic and GIS libraries, as well as comprehensive lists of geospatial datasets down to the county level. This volume combines the traditional and historical collections of cartography with the modern applications of GIS-based maps and geospatial datasets.
Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques
With the increasing competitiveness in the vine market, coupled with the increasing need for sustainable use of resources, strategies for improving farm management are essential. One such effective strategy is the implementation of precision agriculture techniques. Using photogrammetric techniques, the digitalization of farms based on images acquired from unmanned aerial vehicles (UAVs) provides information that can assist in the improvement of farm management and decision-making processes. The objective of the present work is to quantify the impact of the pest Jacobiasca lybica on vineyards and to develop representative cartography of the severity of the infestation. To accomplish this work, computational vision algorithms based on an ANN (artificial neural network) combined with geometric techniques were applied to geomatic products using consumer-grade cameras in the visible spectra. The results showed that the combination of geometric and computational vision techniques with geomatic products generated from conventional RGB (red, green, blue) images improved image segmentation of the affected vegetation, healthy vegetation and ground. Thus, the proposed methodology using low-cost cameras is a more cost-effective application of UAVs compared with multispectral cameras. Moreover, the proposed method increases the accuracy of determining the impact of pests by eliminating the soil effects.
Chinese toponym recognition with variant neural structures from social media messages based on BERT methods
Many natural language tasks related to geographic information retrieval (GIR) require toponym recognition, and identifying Chinese toponyms from social media messages to share real-time information is a critical problem for many practical applications, such as natural disaster response and geolocating. In this article, we focused on toponym recognition from social media messages in Chinese. While existing off-the-shelf Chinese named entity recognition (NER) tools could be applied to identify toponyms, these approaches cannot address a variety of language irregularities taken from social media messages, including location name abbreviations, informal sentence structures and combination toponyms. We present a deep neural network named BERT-BiLSTM-CRF, which extends a basic bidirectional recurrent neural network model (BiLSTM) with the pretraining bidirectional encoder representation from transformers (BERT) representation to handle the toponym recognition task in Chinese text. Using three datasets taken from lists of alternative location names, the experimental results showed that the proposed model can significantly outperform previous Chinese NER models/algorithms and a set of state-of-the-art deep learning models.
Drainage Pattern Recognition of River Network Based on Graph Convolutional Neural Network
Drainage network pattern recognition is a significant task with wide applications in geographic information mining, map cartography, water resources management, and urban planning. Accurate identification of spatial patterns in river networks can help us understand geographic phenomena, optimize map cartographic quality, assess water resource potential, and provide a scientific basis for urban development planning. However, river network pattern recognition still faces challenges due to the complexity and diversity of river networks. To address this issue, this study proposes a river network pattern recognition method based on graph convolutional networks (GCNs), aiming to achieve accurate classification of different river network patterns. We utilize binary trees to construct a hierarchical tree structure based on river reaches and progressively determine the tree hierarchy by identifying the upstream and downstream relationships among river reaches. Based on this representation, input features for the graph convolutional model are extracted from both spatial and geometric perspectives. The effectiveness of the proposed method is validated through classification experiments on four types of vector river network data (dendritic, fan-shaped, trellis, and fan-shaped). The experimental results demonstrate that the proposed method can effectively classify vector river networks, providing strong support for research and applications in related fields.
Applications of Natural Language Processing to Geoscience Text Data and Prospectivity Modeling
Geological maps are powerful models for visualizing the complex distribution of rock types through space and time. However, the descriptive information that forms the basis for a preferred map interpretation is typically stored in geological map databases as unstructured text data that are difficult to use in practice. Herein we apply natural language processing (NLP) to geoscientific text data from Canada, the U.S., and Australia to address that knowledge gap. First, rock descriptions, geological ages, lithostratigraphic and lithodemic information, and other long-form text data are translated to numerical vectors, i.e., a word embedding, using a geoscience language model. Network analysis of word associations, nearest neighbors, and principal component analysis are then used to extract meaningful semantic relationships between rock types. We further demonstrate using simple Naive Bayes classifiers and the area under receiver operating characteristics plots (AUC) how word vectors can be used to: (1) predict the locations of “pegmatitic” (AUC = 0.962) and “alkalic” (AUC = 0.938) rocks; (2) predict mineral potential for Mississippi-Valley-type (AUC = 0.868) and clastic-dominated (AUC = 0.809) Zn-Pb deposits; and (3) search geoscientific text data for analogues of the giant Mount Isa clastic-dominated Zn-Pb deposit using the cosine similarities between word vectors. This form of semantic search is a promising NLP approach for assessing mineral potential with limited training data. Overall, the results highlight how geoscience language models and NLP can be used to extract new knowledge from unstructured text data and reduce the mineral exploration search space for critical raw materials.
Geographic knowledge extraction and semantic similarity in OpenStreetMap
In recent years, a web phenomenon known as Volunteered Geographic Information (VGI) has produced large crowdsourced geographic data sets. OpenStreetMap (OSM), the leading VGI project, aims at building an open-content world map through user contributions. OSM semantics consists of a set of properties (called ‘tags’) describing geographic classes, whose usage is defined by project contributors on a dedicated Wiki website. Because of its simple and open semantic structure, the OSM approach often results in noisy and ambiguous data, limiting its usability for analysis in information retrieval, recommender systems and data mining. Devising a mechanism for computing the semantic similarity of the OSM geographic classes can help alleviate this semantic gap. The contribution of this paper is twofold. It consists of (1) the development of the OSM Semantic Network by means of a web crawler tailored to the OSM Wiki website; this semantic network can be used to compute semantic similarity through co-citation measures, providing a novel semantic tool for OSM and GIS communities; (2) a study of the cognitive plausibility (i.e. the ability to replicate human judgement) of co-citation algorithms when applied to the computation of semantic similarity of geographic concepts. Empirical evidence supports the usage of co-citation algorithms—SimRank showing the highest plausibility—to compute concept similarity in a crowdsourced semantic network.