Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Caryophyllales - anatomy "
Sort by:
Bioinspired inner microstructured tube controlled capillary rise
Effective, long-range, and self-propelled water elevation and transport are important in industrial, medical, and agricultural applications. Although research has grown rapidly, existing methods for water film elevation are still limited. Scaling up for practical applications in an energy-efficient way remains a challenge. Inspired by the continuous water cross-boundary transport on the peristome surface of Nepenthes alata, here we demonstrate the use of peristome-mimetic structures for controlled water elevation by bending biomimetic plates into tubes. The fabricated structures have unique advantages beyond those of natural pitcher plants: bulk water diode transport behavior is achieved with a high-speed passing state (several centimeters per second on a milliliter scale) and a gating state as a result of the synergistic effect between peristome-mimetic structures and tube curvature without external energy input. Significantly, on further bending the peristome-mimetic tube into a “candy cane”-shaped pipe, a self-siphon with liquid diode behavior is achieved. Such a transport mechanism should inspire the design of next generation water transport devices.
Phylogeny of Opuntia s.s. (Cactaceae): Clade delineation, geographic origins, and reticulate evolution
Premise of the study: The opuntias (nopales, prickly pears) are not only culturally, ecologically, economically, and medicinally important, but are renowned for their taxonomic difficulty due to interspecific hybridization, polyploidy, and morphological variability. Evolutionary relationships in these stem succulents have been insufficiently studied; thus, delimitation of Opuntia s. s. and major subclades, as well as the biogeographic history of this enigmatic group, remain unresolved. Methods: We sequenced the plastid intergenic spacers atpB-rbcL, ndhF-rpl32, psbJ-petA, and trnL-trnF, the plastid genes matK and ycfl, the nuclear geneppc, and ITS to reconstruct the phylogeny of tribe Opuntieae, including Opuntia s. s. We used phylogenetic hypotheses to infer the biogeographic history, divergence times, and potential reticulate evolution of Opuntieae. Key results: Within Opuntieae, a clade of Tacinga, Opuntia lilae, Brasiliopuntia, and O. schickendantzii is sister to a well-supported Opuntia s. S., which includes Nopalea. Opuntia s. s. originated in southwestern South America (SA) and then expanded to the Central Andean Valleys and the desert region of western North America (NA). Two major clades evolved in NA, which subsequently diversified into eight subclades. These expanded north to Canada and south to Central America and the Caribbean, eventually returning back to SA primarily via allopolyploid taxa. Dating approaches suggest that most of the major subclades in Opuntia s. s. originated during the Pliocene. Conclusions: Opuntia s. s. is a well-supported clade that includes Nopalea. The clade originated in southwestern SA, but the NA radiation was the most extensive, resulting in broad morphological diversity and frequent species formation through reticulate evolution and polyploidy.
Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae)
Premise of the study: Cactaceae is one of the most charismatic plant families because of the extreme succulence and outstanding diversity of growth forms of its members. Although cacti are conspicuous elements of arid ecosystems in the New World and are model systems for ecological and anatomical studies, the high morphological convergence and scarcity of phenotypic synapomorphies make the evolutionary relationships and trends among lineages difficult to understand. METHODS: We performed phylogenetic analyses implementing parsimony ratchet and likelihood methods, using a concatenated matrix with 6148 bp of plastid and nuclear markers (trnK/matK, matK, trnL-trnF, rpl16, and ppc). We included 224 species representing approximately 85% of the family's genera. Likelihood methods were used to perform an ancestral character reconstruction within Cactoideae, the richest subfamily in terms of morphological diversity and species number, to evaluate possible growth form evolutionary trends. Key results: Our phylogenetic results support previous studies showing the paraphyly of subfamily Pereskioideae and the monophyly of subfamilies Opuntioideae and Cactoideae. After the early divergence of Blossfeldia, Cactoideae splits into two clades: Cacteae, including North American globose and barrel-shaped members, and core Cactoideae, including the largest diversity of growth forms distributed throughout the American continent. Para- or polyphyly is persistent in different parts of the phylogeny. Main Cactoideae clades were found to have different ancestral growth forms, and convergence toward globose, arborescent, or columnar forms occurred in different lineages. CONCLUSIONS: Our study enabled us to provide a detailed hypothesis of relationships among cacti lineages and represents the most complete general phylogenetic framework available to understand evolutionary trends within Cactaceae.
Evolution of seed characters and of dispersal modes in Aizoaceae
The family Aizoaceae includes ~1880 species and is one of the more diverse groups within Caryophyllales, particularly in arid areas in the western part of southern Africa. Most species are dwarf succulent-leaf shrubs. In response to the harsh climatic conditions prevalent where they occur, many representatives have evolved special reproductive adaptations. These include hygrochastic capsules (mostly found in Mesembryanthemoideae and Ruschioideae), burr-like indehiscent and one-seeded, winged diaspores, and fast germination of seeds after rain. We focused on anatomical features, evolutionary trends, and the ecological significance of various morpho-anatomical structures found in the seeds. The seeds of 132 species from 61 genera were studied, and 18 diagnostic characters were discovered. All studied characters were compared with those of other families from core Caryophyllales. The seed notch and embryo shape were added to the list of characteristics distinguishing major clades within the family. In addition, the presence of longitudinal ridges and a keel on the seed are additional characters of Aizooideae and combined Ruschioideae-Apatesieae, respectively. Puzzle-like borders of testa cells are a common trait in Ruschioideae and Mesembryanthemoideae. Most taxa in Aizoaceae have a thin seed coat, which is the ancestral state within the family. This may facilitate fast germination. We observed several shifts to a medium-thick or thick seed coat in members of Ruschioideae and Acrosanthoideae. These inhabit fire-prone environments (in vegetation types known as fynbos and renosterveld ), where the thickened seed coat may protect against damage by fire. Multi-seeded fruits are the ancestral state within Aizoaceae, with several shifts to one-(two-)seeded xerochastic fruits. The latter are dispersed via autochory, zoochory, or anemochory. This trait has evolved mainly in less succulent subfamilies Acrosanthoideae, Aizooideae, and Sesuvioideae. In highly succulent subfamilies Ruschioideae and Mesembryanthemoideae, fruits are almost exclusively multi-seeded and hygrochastic with ombrohydrochoric dispersal. A reduction in the number of seeds within a dispersal unit is rare. Within Apatesieae and Ruschieae, there are also a few unusual genera whose fruits fall apart into one- to two-seeded mericarps (that are mainly dispersed by wind).
C₃ cotyledons are followed by C₄ leaves
Some species of Salsoleae (Chenopodiaceae) convert from C₃ photosynthesis during the seedling stage to the C₄ pathway in adult leaves. This unique developmental transition of photosynthetic pathways offers the exceptional opportunity to follow the development of the derived C₄ syndrome from the C₃ condition within individual plants, avoiding phylogenetic noise. Here we investigate Salsola soda, a little-studied species from tribe Salsoleae, using an ontogenetic approach. Anatomical sections, carbon isotope (δ13C) values, transcriptome analysis by means of mRNA sequencing, and protein levels of the key C₄ enzyme phosphoenolpyruvate carboxylase (PEPC) were examined from seed to adult plant stages. Despite a previous report, our results based on δ13C values, anatomy and transcriptomics clearly indicate a C₃ phase during the cotyledon stage. During this stage, the entire transcriptional repertoire of the C₄ NADP-malic enzyme type is detected at low levels compared to a significant increase in true leaves. In contrast, abundance of transcripts encoding most of the major photorespiratory enzymes is not significantly decreased in leaves compared to cotyledons. PEPC polypeptide was detected only in leaves, correlating with increased PEPC transcript abundance from the cotyledon to leaf stage.
Inflorescence patterns within the genus Portulaca (Portulacaceae): analyses of anatomy and morphology, based on species occurring in Brazil
The inflorescences of Portulacaceae have traditionally been considered capitula and their morphology and architecture have not been studied in detail. The purpose of this study was to expand the knowledge on the inflorescences within this family, comparing members of distinct lineages of Portulaca occurring in Brazil, to understand some systematic and evolutionary patterns within this group. Morphological characteristics of the inflorescences were analyzed using a light stereomicroscope, and for anatomical studies, we made transversal and longitudinal sections along the entire inflorescence, including involucral bracts, analyzing them using an optical microscope. We confirmed that observed inflorescences are determinate, composed of a first-order dichasium, with second-order helicoidal branches forming a cephalioid structure. The involucral leaves differed from adjacent bracts, which did not display a constriction at the base, as commonly observed in leaves. Thus, we conclude that the congested inflorescence of Portulaca is not a capitulum, but a cephalioid with different degrees of branch reduction within the genus. The Pilosa clade displayed the most congested cephalioid compared to members of the other analyzed clades. We present a new interpretation of the congested inflorescences in Portulaca and reinforce the need to analyze solitary inflorescences to understand the importance of these data to the systematics and evolution of Portulacaceae.
In vitro induction of tetraploids and their phenotypic and transcriptome analysis in Glehnia littoralis
Background Glehnia littoralis is a medicinal and edible plant species having commercial value and has several hundred years of cultivation history. Polyploid breeding is one of the most important and fastest ways to generate novel varieties. To obtain tetraploids of G. littoralis in vitro, colchicine treatment was given to the seeds and then were screened based on morphology, flow cytometry, and root tip pressing assays. Furthermore, transcriptome analysis was performed to identity the differentially expressed genes associated with phenotypic changes in tetraploid G. littoralis . Results The results showed that 0.05% (w/v) colchicine treatment for 48 h was effective in inducing tetraploids in G. littoralis . The tetraploid G. littoralis (2n = 4x = 44) was superior in leaf area, leaf thickness, petiole diameter, SPAD value (Chl SPAD), stomatal size, epidermal tissues thickness, palisade tissues thickness, and spongy tissues thickness to the diploid ones, while the stomatal density of tetraploids was significantly lower. Transcriptome sequencing revealed, a total of 1336 differentially expressed genes (DEGs) between tetraploids and diploids. Chromosome doubling may lead to DNA content change and gene dosage effect, which directly affects changes in quantitative traits, with changes such as increased chlorophyll content, larger stomata and thicker tissue of leaves. Several up-regulated DEGs were found related to growth and development in tetraploid G. littoralis such as CKI , PPDK , hisD and MDP1 . KEGG pathway enrichment analyses showed that most of DEGs were enriched in metabolic pathways. Conclusions This is the first report of the successful induction of tetraploids in G. littoralis . The information presented in this study facilitate breeding programs and molecular breeding of G. littoralis varieties.
One-Seeded Fruits in the Core Caryophyllales: Their Origin and Structural Diversity
The core Caryophyllales consist of approximately 30 families (12,000 species) distributed worldwide. Many members evolved one-seeded or conjoined fruits, but their origin and structural diversity have not been investigated. A comparative anatomical investigation of the one-seeded fruits within the core Caryophyllales was conducted. The origin of the one-seeded fruits and the evolutionary reconstructions of some carpological characters were traced using a tree based on rbcl and matK data in order to understand the ancestral characters and their changes. The one-seeded fruit type is inferred to be an ancestral character state in core Caryophyllales, with a subsequent increase in the seed number seen in all major clades. Most representatives of the 'Earlier Diverging' clade are distinguished in various carpological traits. The organization of the pericarp is diverse in many groups, although fruits with a dry, many-layered pericarp, consisting of sclerenchyma as outer layers and a thin-walled parenchyma below, with seeds occupying a vertical embryo position, are likely ancestral character states in the core Caryophyllales clade. Several carpological peculiarities in fruit and seed structure were discovered in obligate one-seeded Achatocarpaceae, Chenopodiaceae, Nyctaginaceae, Seguieriaceae and Sarcobataceae. The horizontal embryo evolved in only certain groups of Chenopodiaceae. The bar-thickening of endotegmen cells appears to be an additional character typical of core Caryophyllales. The syncarpy-to-lysicarpy paradigm in Caryophyllaceae needs to be reinterpreted.
Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales
Nepenthes attracts wide attention with its spectacularly shaped carnivorous pitchers, cultural value and horticultural curiosity. Despite the plant's iconic fascination, surprisingly little anatomical detail is known about the genus beyond its modified leaf tip traps. Here, the wood anatomical diversity of Nepenthes is explored. This diversity is further assessed with a phylogenetic framework to investigate whether the wood characters within the genus are relevant from an evolutionary or ecological perspective, or rather depend on differences in developmental stages, growth habits, substrates or precipitation. Observations were performed using light microscopy and scanning electron microscopy. Ancestral states of selected wood and pith characters were reconstructed using an existing molecular phylogeny for Nepenthes and a broader Caryophyllales framework. Pairwise comparisons were assessed for possible relationships between wood anatomy and developmental stages, growth habits, substrates and ecology. Wood anatomy of Nepenthes is diffuse porous, with mainly solitary vessels showing simple, bordered perforation plates and alternate intervessel pits, fibres with distinctly bordered pits (occasionally septate), apotracheal axial parenchyma and co-occurring uni- and multiseriate rays often including silica bodies. Precipitation and growth habit (stem length) are linked with vessel density and multiseriate ray height, while soil type correlates with vessel diameter, vessel element length and maximum ray width. For Caryophyllales as a whole, silica grains, successive cambia and bordered perforation plates are the result of convergent evolution. Peculiar helical sculpturing patterns within various cell types occur uniquely within the insectivorous clade of non-core Caryophyllales. The wood anatomical variation in Nepenthes displays variation for some characters dependent on soil type, precipitation and stem length, but is largely conservative. The helical-banded fibre-sclereids that mainly occur idioblastically in pith and cortex are synapomorphic for Nepenthes , while other typical Nepenthes characters evolved convergently in different Caryophyllales lineages.
A new species of Neea (Pisonieae, Nyctaginaceae) from central and eastern Amazonia, Brazil, with a note on the typification of Neea ovalifolia
Neea rubescens , a new species from central and eastern Amazonia, is described and its relationships are discussed based on morphological and spectral data. The species occurs in terra firme forests in the states of Amazonas and Pará. In addition to the description, a distribution map and notes on the taxonomy of the new species are provided, as well as a comparative table distinguishing morphologically similar species and an updated key for the 25 species of Neea known from Brazil. Finally, a second-step lectotype for the morphologically similar Neea ovalifolia is designated.