Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
138 result(s) for "Catalepsy - chemically induced"
Sort by:
Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors
The direct and indirect pathways of the basal ganglia have been proposed to oppositely regulate locomotion and differentially contribute to pathological behaviors. Analysis of the distinct contributions of each pathway to behavior has been a challenge, however, due to the difficulty of selectively investigating the neurons comprising the two pathways using conventional techniques. Here we present two mouse models in which the function of striatonigral or striatopallidal neurons is selectively disrupted due to cell type–specific deletion of the striatal signaling protein dopamine- and cAMP-regulated phosphoprotein Mr 32kDa (DARPP-32). Using these mice, we found that the loss of DARPP-32 in striatonigral neurons decreased basal and cocaine-induced locomotion and abolished dyskinetic behaviors in response to the Parkinson's disease drug L-DOPA. Conversely, the loss of DARPP-32 in striatopallidal neurons produced a robust increase in locomotor activity and a strongly reduced cataleptic response to the antipsychotic drug haloperidol. These findings provide insight into the selective contributions of the direct and indirect pathways to striatal motor behaviors.
Optogenetic stimulation of inferior colliculus neurons elicits mesencephalic locomotor region activity and reverses haloperidol-induced catalepsy in rats
The inferior colliculus (IC) represents a pivotal midbrain area involved in processing sensory/emotional facets of auditory stimuli, potentially influencing motor responses. Our prior investigations showed that electric or chemical stimulation of the IC ameliorates haloperidol-induced catalepsy, a manifestation of Parkinsonism in animals. We hypothesized that this amelioration stems from a sensory-motor gating mechanism via IC activation of the mesencephalic locomotor region (MLR). Aiming to investigate this hypothesis, we performed IC optogenetic stimulation and electrophysiological recordings of MLR neuronal activity in anesthetized rats. Additionally, we examined whether optogenetic manipulation of IC could improve motor deficits and affect emotional states in awake rats. Electrophysiological data revealed an excitatory response in MLR neurons following IC optogenetic stimulation, with a longer onset latency in MLR neurons suggesting synaptic modulation from IC to MLR. Behavioral results showed that IC optogenetic stimulation improved haloperidol-induced motor deficits without affecting emotional state or basal locomotor activity.
Low frequency deep brain stimulation in the inferior colliculus ameliorates haloperidol-induced catalepsy and reduces anxiety in rats
Deep brain stimulation (DBS) of the colliculus inferior (IC) improves haloperidol-induced catalepsy and induces paradoxal kinesia in rats. Since the IC is part of the brain aversive system, DBS of this structure has long been related to aversive behavior in rats limiting its clinical use. This study aimed to improve intracollicular DBS parameters in order to avoid anxiogenic side effects while preserving motor improvements in rats. Catalepsy was induced by systemic haloperidol (0.5mg/kg) and after 60 min the bar test was performed during which a given rat received continuous (5 min, with or without pre-stimulation) or intermittent (5 x 1 min) DBS (30Hz, 200–600μA, pulse width 100μs). Only continuous DBS with pre-stimulation reduced catalepsy time. The rats were also submitted to the elevated plus maze (EPM) test and received either continuous stimulation with or without pre-stimulation, or sham treatment. Only rats receiving continuous DBS with pre-stimulation increased the time spent and the number of entries into the open arms of the EPM suggesting an anxiolytic effect. The present intracollicular DBS parameters induced motor improvements without any evidence of aversive behavior, pointing to the IC as an alternative DBS target to induce paradoxical kinesia improving motor deficits in parkinsonian patients.
Exploring the Therapeutic Potentials of Highly Selective Oxygenated Chalcone Based MAO-B Inhibitors in a Haloperidol-Induced Murine Model of Parkinson’s Disease
Parkinson’s disease (PD) is a neurodegenerative disorder of dopaminergic, noradrenergic, and serotonergic systems, in which dopamine, noradrenaline, and serotonin levels are depleted and lead to the development of motor and non-motor symptoms such as tremor, bradykinesia, weight changes, fatigue, depression, and visual hallucinations. Therapeutic strategies place much focus on dopamine replacement and the inhibition of dopamine metabolism. The present study was based on the known abilities of chalcones to act as molecular scaffolds that selectively inhibit MAO-B with the added advantage of binding reversibly. Recently, we synthesized a series of 26 chalcone compounds, amongst which (2 E )-1-(2 H -1,3-benzodioxol-5-yl)-3-(4-fluorophenyl)prop-2-en-1-one ( O10 ) and (2 E )-1-(2,3-dihydro-1,4-benzodioxin-6-yl)-3-(4-fluorophenyl)prop-2-en-1-one ( O23 ) most inhibited MAO-B. Hence, the present study was performed to explore the molecular mechanisms responsible for the neuroprotective effect of O10 and O23 at varying doses such as 10, 20, and 30 mg/kg each in a haloperidol-induced murine model of PD. Both compounds were effective (though O23 was the more effective) at ameliorating extrapyramidal and non-motor symptoms in the model and improved locomotory and exploratory behaviors, reduced oxidative stress markers, and enhanced antioxidant marker and neurotransmitter levels. Furthermore, histopathological studies showed O10 and O23 both reduced neurofibrillary tangles and plaques to almost normal control levels.
Effects of Intracerebral Aminophylline Dosing on Catalepsy and Gait in an Animal Model of Parkinson’s Disease
Parkinson’s disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey’s post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient’s catalepsy and gait.
Sleep deprivation induces late deleterious effects in a pharmacological model of Parkinsonism
Parkinson’s disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.
Taurine and coenzyme Q10 synergistically prevent and reverse chlorpromazine-induced psycho-neuroendocrine changes and cataleptic behavior in rats
Over the years, mounting evidences have suggested a strong association between chronic chlorpromazine therapy, a popular first-generation antipsychotic drug, and psycho-neuroendocrine changes. In this study, we aim to examine whether treatment with taurine and coenzyme Q10 (COQ-10), compounds with steroidogenic-gonadotropin hormone-enhancing properties, can attenuate the negative impacts of chlorpromazine on steroidogenic, gonadotropin, thyroid and HPA-axis hormones, dopamine levels, catalepsy behavior and neuronal cells of the hypothalamus and pituitary gland in the preventive and reversal treatments in male Wister rats. In the drug treatment alone or preventive protocol, rats received oral administration of saline (10 mL/kg), taurine (150 mg/kg/day), COQ-10 (10 mg/kg/day), or both (taurine + COQ-10/day) alone for 56 consecutive days, or in combination with oral chlorpromazine (30 mg/kg/day) treatment from days 29 to 56. In the reversal protocol, the animals received chlorpromazine or saline for 56 days prior to taurine, COQ-10, or the combination from days 29 to 56. Thereafter, serum prolactin, steroidogenic (testosterone, estrogen, progesterone), gonadotropin (luteinizing hormone, LH, follicle-stimulating hormone, FSH), thyroid (thyrotropin-stimulating hormone, tetraiodothyronine, triiodothyronine) hormones, corticosterone, brain dopamine levels and cataleptic behavior were investigated. The histopathological features of the hypothalamus and pituitary gland were also evaluated. Taurine, COQ-10, or their combination prevented and reversed chlorpromazine-induced hyperprolactinemia, decrease in FSH, LH, testosterone, progesterone and dopamine concentrations, as well as the increase in estrogen levels. Taurine and COQ-10 reduced the changes in thyroid hormones, corticosterone release, histological distortions of the hypothalamus and the pituitary gland of chlorpromazine-treated rats. Taurine and COQ-10 attenuated chlorpromazine-induced catalepsy. The study showed that taurine and COQ-10 prevented and reversed chlorpromazine-induced changes in reproductive, thyroid hormones, dopamine level, corticosterone release, neurodegenerations, and cataleptic behavior in rats.
Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies
Rationale AKB48 and its fluorinate derivate 5F-AKB48 are two novel synthetic cannabinoids belonging to a structural class with an indazole core structure. They are marketed as incense, herbal preparations or chemical supply for their psychoactive Cannabis-like effects. Objectives The present study was aimed at investigating the in vitro and in vivo pharmacological activity of AKB48 and 5F-AKB48 in male CD-1 mice and comparing their in vivo effects with those caused by the administration of Δ 9 -THC and JWH-018. Results In vitro competition binding experiments performed on mouse and human CB 1 and CB 2 receptors revealed a nanomolar affinity and potency of the AKB48 and 5F-AKB48. In vivo studies showed that AKB48 and 5F-AKB48, induced hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promoted aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of AKB48 and 5F-AKB48 stimulated dopamine release in the nucleus accumbens. Behavioural, neurological and neurochemical effects were fully prevented by the selective CB 1 receptor antagonist/inverse agonist AM 251. Conclusions For the first time, the present study demonstrates the overall pharmacological effects induced by the administration of AKB48 and 5F-AKB48 in mice and suggests that the fluorination can increase the power and/or effectiveness of SCBs. Furthermore, this study outlines the potential detrimental effects of SCBs on human health.
Dual Target Ligands with 4- tert- Butylphenoxy Scaffold as Histamine H 3 Receptor Antagonists and Monoamine Oxidase B Inhibitors
Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H receptor (H R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4- -butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4- -butylphenoxy)propyl)piperidine ( ). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H R (hH R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH R affinities with K values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC values below 50 nM. However, the most balanced activity against both biological targets showed (hH R: K = 38 nM and hMAO B: IC = 48 nM). Thus, was chosen for further studies, revealing the nontoxic nature of in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.
Anticataleptic activity of nicotine in rats: involvement of the lateral entorhinal cortex
RationaleRecently, it was found that cyclosomatostatin-induced catalepsy in middle-aged rats is accompanied by neuronal hypoactivation in the lateral entorhinal cortex (LEntCx); this hypoactivation was reversed by systemic administration of nicotine combined with diphenhydramine. These findings suggest the ability of nicotine to regulate catalepsy and the involvement of the LEntCx in this nicotine effect.ObjectivesThe study was aimed to assess whether nicotine alone influences catalepsy when injected into the LEntCx and some other neuroanatomical structures.MethodsExperiments were conducted with male Wistar rats of 540–560 days of age. Catalepsy was induced by intracerebroventricular injection of cyclosomatostatin and assessed by the standard bar test. Nicotine was injected into the LEntCx, prelimbic cortex (PrCx), or basolateral amygdala (BLA). The tissue levels of tyrosine hydroxylase, dopamine, and DOPAC in the substantia nigra pars compacta and dorsal striatum were measured with use of HPLC and ELISA.ResultsInjections of nicotine into the LEntCx but not into the PrCx and BLA produced anticataleptic effect; the nicotine effect was significantly reversed by intra-LEntCx administration of NMDA and non-NMDA glutamate receptor antagonists. Nicotine also attenuated cataleptogen-induced changes in nigrostriatal dopamine metabolism.ConclusionsThis may be the first demonstration of anticataleptic activity of nicotine. The results show that the effect is mediated by nicotine receptors in the LEntCx, via a glutamatergic mechanism. These findings may help advance the development of novel treatments for extrapyramidal disorders, including parkinsonism.