Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,256
result(s) for
"Catechin - metabolism"
Sort by:
Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies
2021
The recent outbreak of the coronavirus (SARS-CoV2) is an unprecedented threat to human health and society across the globe. In this context, development of suitable interventions is the need of the hour. The viral spike protein (S Protein) and the cognate host cell receptor ACE2 can be considered as effective and appropriate targets for interventions. It is evident from the present computational study, that catechin and curcumin, not only exhibit strong binding affinity to viral S Protein and host receptor ACE2 but also to their complex (receptor-binding domain (RBD) of the spike protein of SARS-CoV2 and ACE2; RBD/ACE2-complex). The binding affinity values of catechin and curcumin for the S protein, ACE2 and RBD/ACE2-complex are − 10.5 and − 7.9 kcal/mol; − 8.9 and − 7.8 kcal/mol; and − 9.1 and − 7.6 kcal/mol, respectively. Curcumin directly binds to the receptor binding domain (RBD) of viral S Protein. Molecular simulation study over a period of 100 ns further substantiates that such interaction within RBD site of S Protein occurs during 40–100 ns out of 100 ns simulation trajectory. Contrary to this, catechin binds with amino acid residues present near the RBD site of S Protein and causes fluctuation in the amino acid residues of the RBD and its near proximity. Both catechin and curcumin bind the interface of ‘RBD/ACE2-complex’ and intervene in causing fluctuation of the alpha helices and beta-strands of the protein complex. Protein–protein interaction studies in presence of curcumin or catechin also corroborate the above findings suggesting the efficacy of these two polyphenols in hindering the formation of S Protein-ACE2 complex. In conclusion, this computational study for the first time predicts the possibility of above two polyphenols for therapeutic strategy against SARS-CoV2.
Journal Article
Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and its Metabolites
2019
Over the last three decades, green tea has been studied for its beneficial effects, including anti-cancer, anti-obesity, anti-diabetes, anti-inflammatory, and neuroprotective effects. At present, a number of studies that have employed animal, human and cell cultures support the potential neuroprotective effects of green tea catechins against neurological disorders. However, the concentration of (−)-epigallocatechin gallate (EGCG) in systemic circulation is very low and EGCG disappears within several hours. EGCG undergoes microbial degradation in the small intestine and later in the large intestine, resulting in the formation of various microbial ring-fission metabolites which are detectable in the plasma and urine as free and conjugated forms. Recently, in vitro experiments suggested that EGCG and its metabolites could reach the brain parenchyma through the blood–brain barrier and induce neuritogenesis. These results suggest that metabolites of EGCG may play an important role, alongside the beneficial activities of EGCG, in reducing neurodegenerative diseases. In this review, we discuss the function of EGCG and its microbial ring-fission metabolites in the brain in suppressing brain dysfunction. Other possible actions of EGCG metabolites will also be discussed.
Journal Article
Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer
by
Ahmed Khalil, Anees
,
Cho, William C
,
Zorzan, Maira
in
Animals
,
Catechin - analogs & derivatives
,
Catechin - metabolism
2020
Epigallocatechin gallate (EGCG) is the main bioactive component of catechins predominantly present in svarious types of teas. EGCG is well known for a wide spectrum of biological activity as an anti-oxidative, anti-inflammatory, and anti-tumor agent. The effect of EGCG on cell death mechanisms via the induction of apoptosis, necrosis, and autophagy has been documented. Moreover, its anti-proliferative and chemopreventive action has been demonstrated in many cancer cell lines. It was also involved in the modulation of cyclooxygenase-2, in oxidative stress and inflammation of different cell processes. EGCG has been reported as a promising target for plasma membrane proteins, such as epidermal growth factor receptor (EGFR). In addition, it has been demonstrated a mechanism of action relying on the inhibition of ERK1/2, p38 MAPK, NF-κB, and vascular endothelial growth factor (VEGF). EGCG and its derivatives were used in proteasome inhibition and they were involved in epigenetic mechanisms. In summary, EGCG is the most predominant and bioactive constituent of teas and it has a pivotal role in cancer prevention. Its preclinical pharmacological activities are associated with complex molecular mechanisms that involve numerous signaling pathways.
Journal Article
Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review
by
Wei, Xin-Lin
,
Gan, Ren-You
,
Tang, Guo-Yi
in
Amino acids
,
Animals
,
Anti-Inflammatory Agents - pharmacology
2019
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Journal Article
Enzymatic Oxidation of Tea Catechins and Its Mechanism
by
Abudureheman, Buhailiqiemu
,
Yu, Xiaochun
,
Fang, Dandan
in
Acids
,
catechin
,
Catechin - metabolism
2022
Tea (Camellia sinensis, Theaceae) is one of the most widely consumed beverages in the world. The three major types of tea, green tea, oolong tea, and black tea, differ in terms of the manufacture and chemical composition. Catechins, theaflavins, and thearubigins have been identified as the major components in tea. Other minor oligomers have also been found in tea. Different kinds of ring fission and formation elucidate the major transformed pathways of tea catechins to their dimers and polymers. The present review summarizes the data concerning the enzymatic oxidation of catechins, their dimers, and thearubigins in tea.
Journal Article
The metabolome of 2-14C(−)-epicatechin in humans: implications for the assessment of efficacy, safety and mechanisms of action of polyphenolic bioactives
by
Ottaviani, Javier I.
,
Spencer, Jeremy P. E.
,
Schroeter, Hagen
in
631/443/319/320
,
631/92/609
,
64/60
2016
Diet is a major life style factor affecting human health, thus emphasizing the need for evidence-based dietary guidelines for primary disease prevention. While current recommendations promote intake of fruit and vegetables, we have limited understanding of plant-derived bioactive food constituents other than those representing the small number of essential nutrients and minerals. This limited understanding can be attributed to some extent to a lack of fundamental data describing the absorption, distribution, metabolism and excretion (ADME) of bioactive compounds. Consequently, we selected the flavanol (−)-epicatechin (EC) as an example of a widely studied bioactive food constituent and investigated the ADME of [2-
14
C](−)-epicatechin (300 μCi, 60 mg) in humans (n = 8). We demonstrated that 82 ± 5% of ingested EC was absorbed. We also established pharmacokinetic profiles and identified and quantified >20 different metabolites. The gut microbiome proved to be a key driver of EC metabolism. Furthermore, we noted striking species-dependent differences in the metabolism of EC, an insight with significant consequences for investigating the mechanisms of action underlying the beneficial effects of EC. These differences need to be considered when assessing the safety of EC intake in humans. We also identified a potential biomarker for the objective assessment of EC intake that could help to strengthen epidemiological investigations.
Journal Article
Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway
2020
Epigallocatechin-3-gallate (EGCG), a green tea–derived polyphenol, exhibits antitumor activities. An EGCG nanoemulsion (nano-EGCG) was prepared to improve the stability and reduce the side effects of EGCG for treatment of human lung cancer cells, and the antitumor effects were studied. The possible molecular mechanism underlying its antitumor effects on cultured human lung cancer cells was also elucidated. The antitumor effects of EGCG and nano-EGCG were determined using methylthiazolyldiphenyl-tetrazolium bromide (MTT), colony formation, migration, and invasion assays. In addition, changes in the AMP-activated protein kinase (AMPK) signaling pathway were investigated using Western blot analyses. AMPK inhibitors were used to determine the roles of the AMPK signaling pathway involved in the molecular mechanism of the nano-EGCG. Our results showed that both EGCG and nano-EGCG inhibited the growth of H1299 lung cancer cells, with half-maximal inhibitory concentrations of 36.03 and 4.71 μM, respectively. Additionally, nano-EGCG effectively suppressed lung cancer cell colony formation, migration, and invasion in a dose-dependent manner. Nano-EGCG may inhibit lung cancer cell invasion through matrix metalloproteinase (MMP)-2- and MMP-9-independent mechanisms. Furthermore, the expression of several key regulatory proteins in the AMPK signaling pathway was modulated by nano-EGCG. Nano-EGCG may inhibit lung cancer cell proliferation, colony formation, migration, and invasion through the activation of AMPK signaling pathways. This novel mechanism of nano-EGCG suggests its application in lung cancer prevention and treatment. Our results provide an experimental foundation for further research on its potential activities and effects
in vivo
.
Journal Article
Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins
by
Xue, Liangjiao
,
Gershenzon, Jonathan
,
Reichelt, Michael
in
abscisic acid
,
Basidiomycota - physiology
,
benzothiadiazole (BTH)
2019
• Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection.
• We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses.
• Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB–bHLH–WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen.
• We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.
Journal Article
Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage
by
Tiwari, Mradul
,
Vidya, Shimoga M
,
Kalthur, Guruprasad
in
Aging
,
Antioxidants
,
Design of experiments
2017
The present work attempts to develop and statistically optimize transfersomes containing EGCG and hyaluronic acid to synergize the UV radiation-protective ability of both compounds, along with imparting antioxidant and anti-aging effects. Transfersomes were prepared by thin film hydration technique, using soy phosphatidylcholine and sodium cholate, combined with high-pressure homogenization. They were characterized with respect to size, polydispersity index, zeta potential, morphology, entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), in vitro antioxidant activity and ex vivo skin permeation studies. Cell viability, lipid peroxidation, intracellular ROS levels and expression of MMPs (2 and 9) were determined in human keratinocyte cell lines (HaCaT). The composition of the transfersomes was statistically optimized by Design of Experiments using Box–Behnken design with four factors at three levels. The optimized transfersome formulation showed vesicle size, polydispersity index and zeta potential of 101.2 ± 6.0 nm, 0.245 ± 0.069 and −44.8 ± 5.24 mV, respectively. FTIR and DSC showed no interaction between EGCG and the selected excipients. XRD results revealed no form conversion of EGCG in its transfersomal form. The optimized transfersomes were found to increase the cell viability and reduce the lipid peroxidation, intracellular ROS and expression of MMPs in HaCaT cells. The optimized transfersomal formulation of EGCG and HA exhibited considerably higher skin permeation and deposition of EGCG than that observed with plain EGCG. The results underline the potential application of the developed transfersomes in sunscreen cream/lotions for improvement of UV radiation-protection along with deriving antioxidant and anti-aging effects.
Journal Article
Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review
2021
Epigallocatechin gallate (EGCG) is associated with various health benefits. In this review, we searched current work about the effects of EGCG and its wound dressings on skin for wound healing. Hydrogels, nanoparticles, micro/nanofiber networks and microneedles are the major types of EGCG-containing wound dressings. The beneficial effects of EGCG and its wound dressings at different stages of skin wound healing (hemostasis, inflammation, proliferation and tissue remodeling) were summarized based on the underlying mechanisms of antioxidant, anti-inflammatory, antimicrobial, angiogenesis and antifibrotic properties. This review expatiates on the rationale of using EGCG to promote skin wound healing and prevent scar formation, which provides a future clinical application direction of EGCG.
Journal Article