Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,158 result(s) for "Cattle Diseases - virology"
Sort by:
Impact of BTV-3 Circulation in Belgium in 2024 and Current Knowledge Gaps Hindering an Evidence-Based Control Program
Between 2006 and 2010, northwestern Europe experienced its first significant bluetongue virus (BTV) outbreak, driven by the spread of BTV-8, which had major repercussions on the European livestock sector. While BTV-3 was first identified in Europe in Italy in 2017, a new introduction of the virus was reported in 2023, in the Netherlands, and subsequently spread rapidly across the continent. A limited number of BTV-3 outbreaks were notified in Belgium in 2023, leading to the loss of its BTV-free status. In the following year, 2024, the virus spread throughout the country in a short time period. This study describes the impact of BTV-3 circulation in Belgium in 2024, detailing both its geographic spread and the associated increase in mortality, reduced births recorded, and decline in milk production among ruminants. Furthermore, preliminary results on the effectiveness of field vaccination and maternal immunity transfer are presented, as well as critical gaps that hinder the development of a robust, evidence-based management strategy. As the epidemiological situation is expected to become more complex in the future, due to the co-circulation of multiple BTV serotypes and other Culicoides-borne diseases, such as EHDV, effective collaboration and communication among stakeholders and international authorities will be crucial for implementing measures to mitigate the spread of these diseases.
Pathogenicity and transmissibility of bovine H5N1 influenza virus
Highly pathogenic H5N1 avian influenza (HPAI H5N1) viruses occasionally infect, but typically do not transmit, in mammals. In the spring of 2024, an unprecedented outbreak of HPAI H5N1 in bovine herds occurred in the USA, with virus spread within and between herds, infections in poultry and cats, and spillover into humans, collectively indicating an increased public health risk 1 , 2 , 3 – 4 . Here we characterize an HPAI H5N1 virus isolated from infected cow milk in mice and ferrets. Like other HPAI H5N1 viruses, the bovine H5N1 virus spread systemically, including to the mammary glands of both species, however, this tropism was also observed for an older HPAI H5N1 virus isolate. Bovine HPAI H5N1 virus bound to sialic acids expressed in human upper airways and inefficiently transmitted to exposed ferrets (one of four exposed ferrets seroconverted without virus detection). Bovine HPAI H5N1 virus thus possesses features that may facilitate infection and transmission in mammals. HPAI H5N1 virus isolated from infected cow milk is characterized in mice and ferrets, was inefficiently transmitted in ferrets, and bound to sialic acids expressed in human upper airways, showing features that may facilitate infection in mammals.
Avian influenza A (H5N1) virus in dairy cattle: origin, evolution, and cross-species transmission
Since the emergence of highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.3.4.4b as a novel reassortant virus from subtype H5N8, the virus has led to a massive number of outbreaks worldwide in wild and domestic birds. Compared to the parental HPAIV H5N8 clade 2.3.4.4b, the novel reassortant HPAIV H5N1 displayed an increased ability to escape species barriers and infect multiple mammalian species, including humans. The virus host range has been recently expanded to include ruminants, particularly dairy cattle in the United States, where cattle-to-cattle transmission was reported. As with the avian 2.3.4.4.b H5N1 viruses, the cattle-infecting virus was found to transmit from cattle to other contact animals including cats, raccoons, rodents, opossums, and poultry. Although replication of the virus in cows appears to be mainly confined to the mammary tissue, with high levels of viral loads detected in milk, infected cats and poultry showed severe respiratory disease, neurologic signs, and eventually died. Furthermore, several human infections with HPAIV H5N1 have also been reported in dairy farm workers and were attributed to exposures to infected dairy cattle. This is believed to represent the first mammalian-to-human transmission report of the HPAIV H5N1. Fortunately, infection in humans and cows, as opposed to other animals, appears to be mild in most cases. Nevertheless, the H5N1 bovine outbreak represents the largest outbreak of the H5N1 in a domestic mammal close to humans, increasing the risk that this already mammalian adapted H5N1 further adapts to human-to-human transmission and starts a pandemic. Herein, we discuss the epidemiology, evolution, pathogenesis, and potential impact of the recently identified HPAIV H5N1 clade 2.3.4.4b in dairy cattle in the United States. Eventually, interdisciplinary cooperation under a One Health framework is required to be able to control this ongoing HPAIV H5N1 outbreak to stop it before further expansion of its host range and geographical distribution.
Sialic Acid Receptor Specificity in Mammary Gland of Dairy Cattle Infected with Highly Pathogenic Avian Influenza A(H5N1) Virus
In March 2024, the US Department of Agriculture's Animal and Plant Health Inspection Service reported detection of highly pathogenic avian influenza (HPAI) A(H5N1) virus in dairy cattle in the United States for the first time. One factor that determines susceptibility to HPAI H5N1 infection is the presence of specific virus receptors on host cells; however, little is known about the distribution of the sialic acid (SA) receptors in dairy cattle, particularly in mammary glands. We compared the distribution of SA receptors in the respiratory tract and mammary gland of dairy cattle naturally infected with HPAI H5N1. The respiratory and mammary glands of HPAI H5N1-infected dairy cattle are rich in SA, particularly avian influenza virus-specific SA α2,3-gal. Mammary gland tissues co-stained with sialic acids and influenza A virus nucleoprotein showed predominant co-localization with the virus and SA α2,3-gal. HPAI H5N1 exhibited epitheliotropism within the mammary gland, and we observed rare immunolabeling within macrophages.
Survival of viral pathogens in animal feed ingredients under transboundary shipping models
The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (\"high-risk combinations\") under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels.
Avian and Human Influenza A Virus Receptors in Bovine Mammary Gland
An outbreak of influenza A (H5N1) virus was detected in dairy cows in the United States. We detected influenza A virus sialic acid -α2,3/α2,6-galactose host receptors in bovine mammary glands by lectin histochemistry. Our results provide a rationale for the high levels of H5N1 virus in milk from infected cows.
Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus
Fecal virus shedding, seroconversion and histopathology were evaluated in 3-7-year-old gnotobiotic calves orally inoculated with porcine deltacoronavirus (PDCoV) (9.0-9.6 log 10 genomic equivalents [GE] of OH-FD22-P5; n =4) or porcine epidemic diarrhea virus (PEDV) (10.2-12.5 log 10 GE of PC21A; n =3). In PDCoV-inoculated calves, an acute but persisting fecal viral RNA shedding and PDCoV-specific serum IgG antibody responses were observed, but without lesions or clinical disease. However, no fecal shedding, seroconversion, histological lesions, and clinical disease were detected in PEDV-inoculated calves. Our data indicate that calves are susceptible to infection by the newly emerged PDCoV, but not by the swine coronavirus, PEDV.
Rift Valley Fever Epizootic, Rwanda, 2022
A Rift Valley fever epizootic affected livestock in Rwanda during March-October 2022. We confirmed 3,112 infections with the virus, including 1,342 cases, 1,254 abortions, and 516 deaths among cattle, goats, and sheep. We recommend a One Health strategy for investigations and response to protect animal and human health.
Rabies transmitted from vampires to cattle: An overview
Rabies is a zoonotic infectious disease of global distribution that impacts human and animal health. In rural Latin America, rabies negatively impacts food security and the economy due to losses in livestock production. The common vampire bat, Desmodus rotundus , is the main reservoir and transmitter of rabies virus (RABV) to domestic animals in Latin America. Desmodus rotundus RABV is known to impact the cattle industry, from small farmers to large corporations. We assessed the main patterns of rabies in cattle attributed to D . rotundus RABV across Latin America. Epidemiological data on rabies from Latin America were collected from the Pan American Health Organization spanning the 1970–2023 period. Analyses revealed an average of 450 outbreaks annually for the countries where D . rotundus is distributed, with at least 6 animals dying in each outbreak. Brazil, Colombia, Peru, and Mexico were the Latin American countries with the highest number of rabies outbreaks during the study period and are the most affected countries in recent years. Findings suggest a re-emergence of bat-borne rabies in the region with more outbreaks reported in recent years, especially during the 2003–2020 period. Rabies outbreaks in cattle in the 2000–2020 period were significantly more frequent than in previous decades, with an increase in cross-species transmission after 2002. The size of outbreaks, however, was smaller in recent years, involving lower cattle mortality. Peru, El Salvador, and Brazil showed a strong association (R = 0.73, p = 0.01) between rabies incidence in D . rotundus (rates per million humans: 1.61, 0.94, and 1.09, respectively) and rabies outbreaks in cattle (rates per million cattle: 465.85, 351.01, and 48.22, respectively). A sustained, standardized, and widespread monitoring of D . rotundus demography and health could serve to inform an early warning system for the early detection of RABV and other bat-borne pathogens in Latin America. Current data can be used to forecast when, where, and in which intensity RABV outbreaks are more likely to occur in subtropical and tropical Latin America. A decrease in the size of outbreaks could suggest that strategies for epidemic management (e.g., education, early diagnosis, vaccination) have been effective. The increase in the number of outbreaks could suggest that the factors facilitating cross-species transmission could be on the rise.