Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
28,592 result(s) for "Cavities"
Sort by:
Topological insulator laser: Theory
Ideas based on topology, initially developed in mathematics to describe the properties of geometric space under deformations, are now finding application in materials, electronics, and optics. The main driver is topological protection, a property that provides stability to a system even in the presence of defects. Harari et al. outline a theoretical proposal that carries such ideas over to geometrically designed laser cavities. The lasing mode is confined to the topological edge state of the cavity structure. Bandres et al. implemented those ideas to fabricate a topological insulator laser with an array of ring resonators. The results demonstrate a powerful platform for developing new laser systems. Science , this issue p. eaar4003 , p. eaar4005 Lasing is observed in an edge mode of a designed optical topological insulator. Topological insulators are phases of matter characterized by topological edge states that propagate in a unidirectional manner that is robust to imperfections and disorder. These attributes make topological insulator systems ideal candidates for enabling applications in quantum computation and spintronics. We propose a concept that exploits topological effects in a unique way: the topological insulator laser. These are lasers whose lasing mode exhibits topologically protected transport without magnetic fields. The underlying topological properties lead to a highly efficient laser, robust to defects and disorder, with single-mode lasing even at very high gain values. The topological insulator laser alters current understanding of the interplay between disorder and lasing, and at the same time opens exciting possibilities in topological physics, such as topologically protected transport in systems with gain. On the technological side, the topological insulator laser provides a route to arrays of semiconductor lasers that operate as one single-mode high-power laser coupled efficiently into an output port.
Dirac-vortex topological cavities
Cavity design is crucial for single-mode semiconductor lasers such as the ubiquitous distributed feedback and vertical-cavity surface-emitting lasers. By recognizing that both of these optical resonators feature a single mid-gap mode localized at a topological defect in the one-dimensional lattice, we upgrade this topological cavity design concept into two dimensions using a honeycomb photonic crystal with a vortex Dirac gap by applying the generalized Kekulé modulations. We theoretically predict and experimentally show on a silicon-on-insulator platform that the Dirac-vortex cavities have scalable mode areas, arbitrary mode degeneracies, vector-beam vertical emission and compatibility with high-index substrates. Moreover, we demonstrate the unprecedentedly large free spectral range, which defies the universal inverse relation between resonance spacing and resonator size. We believe that our topological micro-resonator will be especially useful in applications where single-mode behaviour is required over a large area, such as the photonic-crystal surface-emitting laser.Surface emission from a topological mid-gap cavity shows large free spectral range and arbitrary mode degeneracy.
Tree Cavity Occupancy by Nesting Vertebrates across Cavity Age
Cavity-nesting birds and mammals exhibit species-specific nest-site selection for tree characteristics and cavity dimensions. Although trees and their cavities change as they age, with trees becoming softer and cavities becoming larger, it is not known how their value as nesting resources varies with age. In the context of wildlife and forest management, we investigated the relative value of generating a supply of fresh cavities, which are thought to be of high quality, versus protecting cavities as they age and expand in interior volume. For 21 years (1995-2016), we monitored the formation and occupancy of tree cavities used by >30 species of birds and mammals in interior British Columbia, Canada. Cavity occupancy by secondary users was highest 1 year post-excavation (53%), then declined to 40% after 2 years, remained at 33 ± 7% (SD) between 3 and 16 years of age, and increased to 50% use from 17–20 years post-excavation. Excavators that reused cavities (woodpeckers [Picidae], nuthatches [Sitta spp.]) strongly selected 1- and 2-year-old cavities, large-bodied non-excavators (ducks, raptors, squirrels) selected mid-aged cavities, and mountain bluebirds (Sialia currucoides) and tree swallows (Tachycineta bicolor) selected most strongly for the oldest cavities. Cavities created in living aspen trees (Populus spp.), especially those excavated by northern flickers (Colaptes auratus), maintained high occupancy by secondary users across cavity age, and provided the bulk of cavities used in this system. Altogether, these results show that a diverse excavator community is needed to generate a supply of fresh cavities in the ecosystem, and retention of the mid-aged and older cavities will help support larger species.
The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world
Aim: Globally, many bird species nest in tree cavities that are either excavated or formed through decay or damage processes. We assembled an overview of all tree-cavity nesters (excavators and non-excavators) in the world, analysed their geographic distribution and listed the conservation status of all species. Location: This is a global analysis of species from every continent except for Antarctica where the lack of trees precludes the occurrence of this group. Methods: We reviewed the online version of the Handbook of the Birds of the World Alive, http://www.hbw.com/, and primary literature for species known to nest in tree cavities, with tree cavities defined as holes that a bird can enter such that it is not visible from the outside. We classified species by nester type (excavator or non-excavator, and obligate or facultative where possible), conservation threat status and zoogeographic region, and tested for statistical differences in species distributions across realms using chi-square tests. Results: At least 1878 species (18.1% of all bird species in the world) nest in tree cavities, of which we considered 355 to be primary excavators, 126 facultative excavators and 1357 non-excavators (we were unable to classify nesting type for 40 species). At least 338 species use cavities created by woodpeckers (Picidae), excluding reuse by woodpeckers themselves. About 13% (249 species) of tree-cavity nesters experience major threats (i.e., status of vulnerable, endangered or critically endangered). The highest richness of tree-cavity nesters is found in the Neotropical (678 species) and Oriental (453) regions, and the highest proportion of threatened species in Australasia (17%). Main conclusion: Maintenance of a continual supply of cavities, a process in which woodpeckers and the processes of decay play critical roles, is a global conservation priority as tree cavities provide important nesting sites for many bird species.
Lifetime productivity of tree cavities used by cavity-nesting animals in temperate and subtropical forests
Tree cavities are a critical multi-annual resource that can limit populations and structure communities of cavity-nesting vertebrates. We examined the regional and local factors influencing lifetime productivity (number and richness of occupants) of individual tree cavities across two divergent forest ecosystems: temperate mixed forest in Canada and subtropical Atlantic Forest, Argentina. We predicted that (1) species would accumulate more rapidly within cavities in the species-rich system (Argentina: 76 species) than the poorer system (Canada: 31 species), (2) cavity characteristics associated with nest-site selection in short-term studies would predict lifetime cavity productivity, and (3) species would accumulate more rapidly across highly used cavities than across cavities used only once, and in Argentina than in Canada. We monitored and measured nesting cavities used by birds and mammals over 22 breeding seasons (1995–2016) in Canada and 12 breeding seasons (2006–2017) in Argentina. Cavities were used an average of 3.1 times by 1.7 species in Canada and 2.2 times by 1.4 species in Argentina. Species richness within cavities increased with number of nesting events at similar rates in Canada and Argentina, in both cases much slower than expected if within-cavity species assemblages were random, suggesting that lifetime richness of individual cavities is more strongly influenced by local ecological factors (nest site fidelity, nest niche) than by the regional species pool. The major determinant of lifetime cavity productivity was the cavity’s life span. We found only weak or inconsistent relationships with cavity characteristics selected by individuals in short-term nest-site selection studies. Turnover among (vs. within) cavities was the primary driver of diversity at the landscape scale. In Canada, as predicted, species accumulation was fastest when sampling across high-use cavities. In Argentina, the rates of species accumulation were similar across high-and low-use cavities, and fastest when both high-and low-use cavities were pooled. These findings imply that biodiversity of cavity nesters is maintained by a mix of long-lived (highly productive, legacy trees) and many high-turnover (single-use, fast decaying) tree cavities. Conservation of both long-lasting and single-use cavities should be incorporated into decisions about stand-level forest management, regional land use policies, and reserve networks.
Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury
During injury, monocytes are recruited from the circulation to inflamed tissues and differentiate locally into mature macrophages, with prior reports showing that cavity macrophages of the peritoneum and pericardium invade deeply into the respective organs to promote repair. Here we report a dual recombinase-mediated genetic system designed to trace cavity macrophages in vivo by intersectional detection of two characteristic markers. Lineage tracing with this method shows accumulation of cavity macrophages during lung and liver injury on the surface of visceral organs without penetration into the parenchyma. Additional data suggest that these peritoneal or pleural cavity macrophages do not contribute to tissue repair and regeneration. Our in vivo genetic targeting approach thus provides a reliable method to identify and characterize cavity macrophages during their development and in tissue repair and regeneration, and distinguishes these cells from other lineages. Body cavity macrophages reside on the serous surfaces of organs and believed to participate in organ repair following injury. Here the authors show with a fate-mapping reporter system that these cells, although accumulate at the surfaces of injured liver or lung, don’t penetrate deeply into the tissue.
Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation
Locking of longitudinal modes in laser cavities is the common path to generate ultrashort pulses. In traditional multi-wavelength mode-locked lasers, the group velocities rely on lasing wavelengths due to the chromatic dispersion, yielding multiple trains of independently evolved pulses. Here, we show that mode-locked solitons at different wavelengths can be synchronized inside the cavity by engineering the intracavity group delay with a programmable pulse shaper. Frequency-resolved measurements fully retrieve the fine temporal structure of pulses, validating the direct generation of synchronized ultrafast lasers from two to five wavelengths with sub-pulse repetition-rate up to ~1.26 THz. Simulation results well reproduce and interpret the key experimental phenomena, and indicate that the saturable absorption effect automatically synchronize multi-wavelength solitons in despite of the small residual group delay difference. These results demonstrate an effective approach to create synchronized complex-structure solitons, and offer an effective platform to study the evolution dynamics of nonlinear wavepackets. The coherence degradation of pulses synchronized to optical cavities is an issue for ultrahigh-repetition-rate lasing. Here the authors demonstrate synchronized multi-wavelength mode-locked soliton fiber lasers generating ultrafast outputs from two to five wavelengths with a high sub-pulse repetition rate.
Supersymmetric laser arrays
Scaling up the radiance of coupled laser arrays has been a long-standing challenge in photonics. In this study, we demonstrate that notions from supersymmetry—a theoretical framework developed in high-energy physics—can be strategically used in optics to address this problem. In this regard, a supersymmetric laser array is realized that is capable of emitting exclusively in its fundamental transverse mode in a stable manner. Our results not only pave the way toward devising new schemes for scaling up radiance in integrated lasers, but also, on a more fundamental level, could shed light on the intriguing synergy between non-Hermiticity and supersymmetry.
Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion
Malignant pleural effusion (MPE) is indicative of terminal malignancy with a uniformly fatal prognosis. Often, two distinct compartments of tumour microenvironment, the effusion and disseminated pleural tumours, co-exist in the pleural cavity, presenting a major challenge for therapeutic interventions and drug delivery. Clinical evidence suggests that MPE comprises abundant tumour-associated myeloid cells with the tumour-promoting phenotype, impairing antitumour immunity. Here we developed a liposomal nanoparticle loaded with cyclic dinucleotide (LNP-CDN) for targeted activation of stimulators of interferon genes signalling in macrophages and dendritic cells and showed that, on intrapleural administration, they induce drastic changes in the transcriptional landscape in MPE, mitigating the immune cold MPE in both effusion and pleural tumours. Moreover, combination immunotherapy with blockade of programmed death ligand 1 potently reduced MPE volume and inhibited tumour growth not only in the pleural cavity but also in the lung parenchyma, conferring significantly prolonged survival of MPE-bearing mice. Furthermore, the LNP-CDN-induced immunological effects were also observed with clinical MPE samples, suggesting the potential of intrapleural LNP-CDN for clinical MPE immunotherapy.Malignant pleural effusion (MPE) is the terminal stage of cancer and the current standard of care for MPE is largely palliative. Here the authors design a liposomal nanoparticle loaded with cyclic dinucleotide for targeted activation of STING signalling in macrophages and dendritic cells and show that, on intrapleural administration, the nanoparticle effectively mitigates the immune cold MPE and significantly augments the checkpoint blockade immunotherapy in a mouse MPE model and clinical patients’ samples.