Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
127
result(s) for
"Ceftazidime - adverse effects"
Sort by:
Efficacy and Safety of Ceftazidime-Avibactam Plus Metronidazole Versus Meropenem in the Treatment of Complicated Intra-abdominal Infection: Results From a Randomized, Controlled, Double-Blind, Phase 3 Program
2016
Background. When combined with ceftazidime, the novel non–β-lactam β-lactamase inhibitor avibactam provides a carbapenem alternative against multidrug-resistant infections. Efficacy and safety of ceftazidime-avibactam plus metronidazole were compared with meropenem in 1066 men and women with complicated intra-abdominal infections from 2 identical, randomized, double-blind phase 3 studies (NCT01499290 and NCT01500239). Methods. The primary end point was clinical cure at test-of-cure visit 28–35 days after randomization, assessed by noninferiority of ceftazidime-avibactam plus metronidazole to meropenem in the microbiologically modified intention-to-treat (mMITT) population (in accordance with US Food and Drug Administration guidance), and the modified intention-to-treat and clinically evaluable populations (European Medicines Agency guidance). Noninferiority was considered met if the lower limit of the 95% confidence interval for between-group difference was greater than the prespecified noninferiority margin of −12.5%. Results. Ceftazidime-avibactam plus metronidazole was noninferior to meropenem across all primary analysis populations. Clinical cure rates with ceftazidime-avibactam plus metronidazole and meropenem, respectively, were as follows: mMITT population, 81.6% and 85.1% (between-group difference, −3.5%; 95% confidence interval −8.64 to 1.58); modified intention-to-treat, 82.5% and 84.9% (−2.4%; −6.90 to 2.10); and clinically evaluable, 91.7% and 92.5% (−0.8%; −4.61 to 2.89). The clinical cure rate with ceftazidime-avibactam plus metronidazole for ceftazidime-resistant infections was comparable to that with meropenem (mMITT population, 83.0% and 85.9%, respectively) and similar to the regimen's own efficacy against ceftazidime-susceptible infections (82.0%). Adverse events were similar between groups. Conclusions. Ceftazidime-avibactam plus metronidazole was noninferior to meropenem in the treatment of complicated intra-abdominal infections. Efficacy was similar against infections caused by ceftazidime-susceptible and ceftazidime-resistant pathogens. The safety profile of ceftazidime-avibactam plus metronidazole was consistent with that previously observed with ceftazidime alone. Clinical Trials Registration. NCT01499290 and NCT01500239.
Journal Article
Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program
2016
Background. The global emergence of carbapenem-resistant Enterobacteriaceae highlights the urgent need to reduce carbapenem dependence. The phase 3 RECAPTURE program compared the efficacy and safety of ceftazidime-avibactam and doripenem in patients with complicated urinary tract infection (cUTI), including acute pyelonephritis. Methods. Hospitalized adults with suspected or microbiologically confirmed cUTI/acute pyelonephritis were randomized 1:1 to ceftazidime-avibactam 2000 mg/500 mg every 8 hours or doripenem 500 mg every 8 hours (doses adjusted for renal function), with possible oral antibiotic switch after ≥5 days (total treatment duration up to 10 days or 14 days for patients with bacteremia). Results. Of 1033 randomized patients, 393 and 417 treated with ceftazidime-avibactam and doripenem, respectively, were eligible for the primary efficacy analyses; 19.6% had ceftazidime-nonsusceptible baseline pathogens. Noninferiority of ceftazidimeavibactam vs doripenem was demonstrated for the US Food and Drug Administration co-primary endpoints of (1) patient-reported symptomatic resolution at day 5: 276 of 393 (70.2%) vs 276 of 417 (66.2%) patients (difference, 4.0% [95% confidence interval {CI}, −2.39% to 10.42%]); and (2) combined symptomatic resolution/microbiological eradication at test of cure (TOC): 280 of 393 (71.2%) vs 269 of 417 (64.5%) patients (difference, 6.7% [95% CI, .30% to 13.12%]). Microbiological eradication at TOC (European Medicines Agency primary endpoint) occurred in 304 of 393 (77.4%) ceftazidime-avibactam vs 296 of 417 (71.0%) doripenem patients (difference, 6.4% [95% CI, .33% to 12.36%]), demonstrating superiority at the 5% significance level. Both treatments showed similar efficacy against ceftazidime-nonsusceptible pathogens. Ceftazidime-avibactam had a safety profile consistent with that of ceftazidime alone. Conclusions. Ceftazidime-avibactam was highly effective for the empiric treatment of cUTI (including acute pyelonephritis), and may offer an alternative to carbapenems in this setting. Clinical Trials Registration. NCT01595438; NCT01599806.
Journal Article
Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections
by
Nguyen, M. Hong
,
Chen, Liang
,
Doi, Yohei
in
Adult
,
Aged
,
Azabicyclo Compounds - adverse effects
2016
Thirty-seven carbapenem-resistant Enterobacteriaceae (CRE)-infected patients were treated with ceftazidime-avibactam. Clinical success and survival rates at 30 days were 59% (22/37) and 76% (28/37), respectively. In 23% (5/22) of clinical successes, CRE infections recurred within 90 days. Microbiologic failure rate was 27% (10/37). Ceftazidime-avibactam resistance was detected in 30% (3/10) of microbiologic failures.
Journal Article
Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections
2018
Ceftazidime-avibactam (Zavicefta
®
) is an intravenously administered combination of the third-generation cephalosporin ceftazidime and the novel, non-β-lactam β-lactamase inhibitor avibactam. In the EU, ceftazidime-avibactam is approved for the treatment of adults with complicated urinary tract infections (cUTIs) [including pyelonephritis], complicated intra-abdominal infections (cIAIs), hospital-acquired pneumonia (HAP) [including ventilator-associated pneumonia (VAP)], and other infections caused by aerobic Gram-negative organisms in patients with limited treatment options. This article discusses the in vitro activity and pharmacological properties of ceftazidime-avibactam, and reviews data on the agent’s clinical efficacy and tolerability relating to use in these indications, with a focus on the EU label. Ceftazidime-avibactam has excellent in vitro activity against many important Gram-negative pathogens, including many extended-spectrum β-lactamase-, AmpC-,
Klebsiella pneumoniae
carbapenemase- and OXA-48-producing Enterobacteriaceae and drug-resistant
Pseudomonas aeruginosa
isolates; it is not active against metallo-β-lactamase-producing strains. The clinical efficacy of ceftazidime-avibactam in the treatment of cUTI, cIAI and HAP (including VAP) in adults was demonstrated in pivotal phase III non-inferiority trials with carbapenem comparators. Ceftazidime-avibactam treatment was associated with high response rates at the test-of-cure visit in patients with infections caused by ceftazidime-susceptible and -nonsusceptible Gram-negative pathogens. Ceftazidime-avibactam was generally well tolerated, with a safety and tolerability profile consistent with that of ceftazidime alone and that was generally typical of the injectable cephalosporins. Thus, ceftazidime-avibactam represents a valuable new treatment option for these serious and difficult-to-treat infections.
Journal Article
Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study
2016
Carbapenems are frequently the last line of defence in serious infections due to multidrug-resistant Gram-negative bacteria, but their use is threatened by the growing prevalence of carbapenemase-producing pathogens. Ceftazidime-avibactam is a potential new agent for use in such infections. We aimed to assess the efficacy, safety, and tolerability of ceftazidime-avibactam compared with best available therapy in patients with complicated urinary tract infection or complicated intra-abdominal infection due to ceftazidime-resistant Gram-negative pathogens.
REPRISE was a pathogen-directed, international, randomised, open-label, phase 3 trial that recruited patients from hospitals across 16 countries worldwide. Eligible patients were aged 18–90 years with complicated urinary tract infection or complicated intra-abdominal infection caused by ceftazidime-resistant Enterobacteriaceae or Pseudomonas aeruginosa. Patients were randomised (1:1) to 5–21 days of treatment with either ceftazidime-avibactam (a combination of 2000 mg ceftazidime plus 500 mg avibactam, administered via a 2-h intravenous infusion every 8 h) or best available therapy. The primary endpoint was clinical response at the test-of-cure visit, 7–10 days after last infusion of study therapy, analysed in all patients who had at least one ceftazidime-resistant Gram-negative pathogen, as confirmed by the central laboratory, and who received at least one dose of study drug. Safety endpoints were assessed in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT01644643.
Between Jan 7, 2013, and Aug 29, 2014, 333 patients were randomly assigned, 165 to ceftazidime-avibactam and 168 to best available therapy. Of these, 154 assigned to ceftazidime-avibactam (144 with complicated urinary tract infection and ten with complicated intra-abdominal infection) and 148 assigned to best available therapy (137 with complicated urinary tract infection and 11 with complicated intra-abdominal infection) were analysed for the primary outcome. 163 (97%) of 168 patients in the best available therapy group received a carbapenem, 161 (96%) as monotherapy. The overall proportions of patients with a clinical cure at the test-of-cure visit were similar with ceftazidime-avibactam (140 [91%; 95% CI 85·6–94·7] of 154 patients) and best available therapy (135 [91%; 85·9–95·0] of 148 patients). 51 (31%) of 164 patients in the ceftazidime-avibactam group and 66 (39%) of 168 in the best available therapy group had an adverse event, most of which were mild or moderate in intensity. Gastrointestinal disorders were the most frequently reported treatment-emergent adverse events with both ceftazidime-avibactam (21 [13%] of 164 patients) and best available therapy (30 [18%] of 168 patients). No new safety concerns were identified for ceftazidime-avibactam.
These results provide evidence of the efficacy of ceftazidime-avibactam as a potential alternative to carbapenems in patients with ceftazidime-resistant Enterobacteriaceae and P aeruginosa.
AstraZeneca.
Journal Article
The Safety of Aztreonam Versus Ceftazidime in Patients Labeled With Penicillin Allergy: A Cohort Study
2024
•Ceftazidime is as safe as aztreonam in patients labelled with penicillin allergy.•Ceftazidime is more economical than aztreonam.•Penicillin allergy de-labelling to be considered for patients with unknown reaction.•Use ceftazidime, conserve broad-spectrum antibiotics, slow antimicrobial resistance.
Penicillin allergy is the most common drug allergy among hospitalized patients. Traditionally, aztreonam is recommended for patients labeled with penicillin allergy (PLWPA) in our institutional empirical antibiotic guidelines. Due to a global aztreonam shortage in December 2022, the antimicrobial stewardship unit recommended ceftazidime as a substitute. There is a paucity of real-world data on the safety profile of ceftazidime in PLWPA. Hence, we evaluated tolerability outcomes of ceftazidime use in PLWPA.
This retrospective cohort study compared PLWPA in Singapore General Hospital who received aztreonam (October 2022–December 2022) or ceftazidime (December 2022–February 2023). Patients were stratified according to their risk of allergic reaction (AR) based on history of penicillin allergy. The severity of AR was based on the Delphi study grading system. The primary outcome was development of AR after initiation of aztreonam or ceftazidime. The secondary tolerability outcomes include hepatotoxicity and neurotoxicity.
There were 168 patients in the study; 69 were men (41.1%) and the median age was 69 years (interquartile range: 59–76 years). Incidence of AR was statistically similar in both arms: 1 of 102 patients (0.98%) in the aztreonam arm vs 2 of 66 patients (3.03%) in the ceftazidime arm (P = 0.33). The patient in the aztreonam arm was deemed at medium risk of having an AR and developed localized rashes (grade 1). Both patients in the ceftazidime arm were deemed at high risk of AR and developed localized skin reaction (grade 1). Hepatotoxicity was observed in 1 patient prescribed aztreonam. No patients in the ceftazidime arm developed adverse events.
Ceftazidime appears to be better tolerated and cheaper compared with aztreonam in PLWPA, and serves as an antimicrobial stewardship strategy to conserve broader-spectrum antibiotics use.
Journal Article
Serious adverse events with novel beta-lactam/beta-lactamase inhibitor combinations: a large-scale pharmacovigilance analysis
2021
The purpose of this study is to characterize adverse events (AEs) of clinical interest reported with ceftolozane-tazobactam and ceftazidime-avibactam, as an aid in monitoring patients affected by severe multidrug-resistant Gram-negative infections. We queried the worldwide FDA Adverse Event Reporting System (FAERS) and performed disproportionality analysis, selecting only designated medical events (DMEs) where ceftolozane-tazobactam and ceftazidime-avibactam were reported as suspect. Serious neurological AEs were further investigated. The reporting odds ratios were calculated, deemed significant by the lower limit of the 95% confidence interval (LL95% CI) > 1. All other drugs/events recorded in FAERS and cephalosporins showing clinical evidence of neurological AEs were respectively selected as comparator for analysis of DMEs and neurotoxicity. Qualitative analysis including case-by-case assessment and deduplication was also performed. Overall, 654 and 506 reports mentioning respectively ceftolozane-tazobactam and ceftazidime-avibactam were found, with DMEs accounting respectively for 13.1% and 10.9% of cases. Agranulocytosis (N = 12; LL95% CI = 12.40) and pancytopenia (14; 6.18) emerged as unexpected AEs with ceftolozane-tazobactam, while acute pancreatitis (7; 8.63) was an over-reported unexpected DME with ceftazidime-avibactam. After deduplication, four unequivocally different cases of agranulocytosis with ceftolozane-tazobactam were retained, occurring on average after 8.8 days. Causality was probable and possible respectively in three and one case. Among neurological AEs exhibiting significant disproportionality, encephalopathy with both antibiotics and mental status changes with ceftazidime-avibactam were retained in at least three cases after deduplication. Although rare, clinicians should monitor high-risk patients (i.e. individuals affected by haematological malignances, HIV infection, or treated with concomitant myelotoxic agents) for early unexpected occurrence of agranulocytosis with ceftolozane-tazobactam.
Journal Article
Safety evaluation of ceftazidime/avibactam based on FAERS database
by
Zhang, Xiuhong
,
Jiang, Ying
,
Qi, Zhigang
in
Adult
,
Adverse Drug Reaction Reporting Systems - statistics & numerical data
,
Adverse events
2024
To explore adverse event (AE) signals of Ceftazidime/avibactam (CZA) based on the FDA Adverse Event Reporting System (FAERS) database.
AE reports primarily associated with CZA were retrieved from the FAERS database from the second quarter of 2015 to the second quarter of 2023. Signal detection was conducted using the reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS) methods.
A total of 750 AEs reports with CZA as the preferred suspected drug were obtained, identifying 66 preferred terms (PTs) involving 24 system organ classes (SOCs). Besides, the AEs already mentioned in the drug label, this study also revealed some new, clinically valuable potential AEsignals, such as Cholestasis (n = 14, ROR 29.39, PRR 29.15, IC 3.34, EBGM 29.11), Drug-induced liver injury (n = 8, ROR 9.05, PRR 9.01, IC 2.25, EBGM 9.01), Hepatocellular injury (n = 7, ROR 13.90, PRR 13.84, IC 2.41, EBGM 13.63), Haemolytic anaemia (n = 5, ROR 24.29, PRR 24.22, IC 2.42, EBGM 40.53), etc. Additionally, AE signals with higher intensity were identified, such as Hypernatraemia (n = 5, ROR 40.73, PRR 40.61, IC 2.31, EBGM 24.19), Toxic epidermal necrolysis (n = 4, ROR 11.58, PRR 11.55, IC 1.89, EBGM 11.54). Therefore, special vigilance for these potential AEs is warranted when using CZA clinically.
This study highlights the potential AEs and risks associated with the clinical use of CZA, particularly the risks related to Cholestasis, Drug-induced liver injury, Haemolytic anaemia, Hypernatraemia, and Toxic epidermal necrolysis.
Journal Article
Ceftazidime-related neurotoxicity in a patient with renal impairment: a case report and literature review
by
Vanneste, Dorian
,
Van Paesschen, Wim
,
Gijsen, Matthias
in
Aged
,
Anti-Bacterial Agents - adverse effects
,
Case reports
2024
Purpose
We present the case of a 67-year-old woman with severely reduced renal clearance suffering from ceftazidime-induced encephalopathy. Subsequently, we search the literature to review and describe the neurotoxicity of ceftazidime.
Methods
A search string was developed to search PubMed for relevant cases from which relevant information was extracted. Using the collected data a ROC analysis was performed in R to determine a neurotoxicity threshold.
Results
Our patient suffered from progressive loss of consciousness and myoclonic seizures, with improvements noted a few days after discontinuation of treatment. The dose was not appropriately reduced to take into account her reduced renal function. The highest ceftazidime concentration recorded was 234.9 mg/mL. Using the Naranjo score we found a probable relationship between our patient’s encephalopathy and ceftazidime administration. In the literature we found a total of 32 similar cases, most of which also had some form of renal impairment. Using our collected data and ceftazidime concentrations provided in the literature, a ROC analysis provided a neurotoxicity threshold of 78 mg/L for ceftazidime neurotoxicity.
Conclusion
Ceftazidime-related neurotoxicity is a known issue, especially in patients with severe renal impairment. Yet no concrete toxicity threshold has been reported so far. We propose the first toxicity threshold for ceftazidime of 78 mg/L. Future prospective studies are needed to validate and optimize the neurotoxicity threshold as upper limit for ceftazidime therapeutic drug monitoring.
Journal Article
Efficacy of drug treatment for severe melioidosis and eradication treatment of melioidosis: A systematic review and network meta-analysis
by
Poramathikul, Kamonporn
,
Phontham, Kittijarankon
,
Boonyarangka, Parat
in
Antibacterial agents
,
Antibiotics
,
Biology and Life Sciences
2023
This systematic review and network meta-analysis (NMA) aimed to compare the efficacy of all available treatments for severe melioidosis in decreasing hospital mortality and to identify eradication therapies with low disease recurrence rates and minimal risk of adverse drug events (AEs).
Relevant randomized controlled trials (RCT) were searched from Medline and Scopus databases from their inception until July 31, 2022. RCTs that compared the efficacy between treatment regimens for severe melioidosis or eradication therapy of melioidosis, measured outcomes of in-hospital mortality, disease recurrence, drug discontinuation, or AEs, were included for review. A two-stage NMA with the surface under the cumulative ranking curve (SUCRA) was used to estimate the comparative efficacy of treatment regimens.
Fourteen RCTs were included in the review. Ceftazidime plus granulocyte colony-stimulating factor (G-CSF), ceftazidime plus trimethoprim-sulfamethoxazole (TMP-SMX), and cefoperazone-sulbactam plus TMP-SMX had a lower mortality rate than other treatments and were ranked as the top three most appropriate treatments for severe melioidosis with the SUCRA of 79.7%, 66.6%, and 55.7%, respectively. However, these results were not statistically significant. For eradication therapy, treatment with doxycycline monotherapy for 20 weeks was associated with a significantly higher risk of disease recurrence than regimens containing TMP-SMX (i.e.,TMP-SMX for 20 weeks, TMP-SMX plus doxycycline plus chloramphenicol for more than 12 weeks, and TMP-SMX plus doxycycline for more than 12 weeks). According to the SUCRA, TMP-SMX for 20 weeks was ranked as the most efficacious eradication treatment (87.7%) with the lowest chance of drug discontinuation (86.4%), while TMP-SMX for 12 weeks had the lowest risk of AEs (95.6%).
Our results found a non-significant benefit of ceftazidime plus G-CSF and ceftazidime plus TMP-SMX over other treatments for severe melioidosis. TMP-SMX for 20 weeks was associated with a lower recurrence rate and minimal risk of adverse drug events compared to other eradication treatments. However, the validity of our NMA may be compromised by the limited number of included studies and discrepancies in certain study parameters. Thus, additional well-designed RCTs are needed to improve the therapy of melioidosis.
Journal Article