Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,528
result(s) for
"Cell Enlargement"
Sort by:
Transcriptome Profiling, Molecular Biological, and Physiological Studies Reveal a Major Role for Ethylene in Cotton Fiber Cell Elongation
by
Feng, Jian-Xun
,
Zhang, Liang
,
Shi, Yong-Hui
in
ACO1-3 gene
,
Amino Acids, Cyclic
,
Amino Acids, Cyclic - genetics
2006
Upland cotton (Gossypium hirsutum) produces the most widely used natural fibers, yet the regulatory mechanisms governing fiber cell elongation are not well understood. Through sequencing of a cotton fiber cDNA library and subsequent microarray analysis, we found that ethylene biosynthesis is one of the most significantly upregulated biochemical pathways during fiber elongation. The 1-Aminocyclopropane-1-Carboxylic Acid Oxidase1-3 (ACO1-3) genes responsible for ethylene production were expressed at significantly higher levels during this growth stage. The amount of ethylene released from cultured ovules correlated with ACO expression and the rate of fiber growth. Exogenously applied ethylene promoted robust fiber cell expansion, whereas its biosynthetic inhibitor L-(2-aminoethoxyvinyl)-glycine (AVG) specifically suppressed fiber growth. The brassinosteroid (BR) biosynthetic pathway was modestly upregulated during this growth stage, and treatment with BR or its biosynthetic inhibitor brassinazole (BRZ) also promoted or inhibited, respectively, fiber growth. However, the effect of ethylene treatment was much stronger than that of BR, and the inhibitory effect of BRZ on fiber cells could be overcome by ethylene, but the AVG effect was much less reversed by BR. These results indicate that ethylene plays a major role in promoting cotton fiber elongation. Furthermore, ethylene may promote cell elongation by increasing the expression of sucrose synthase, tubulin, and expansin genes.
Journal Article
Sulfation patterns of glycosaminoglycans encode molecular recognition and activity
by
Vaidehi, Nagarajan
,
Rawat, Manish
,
Clark, Peter M
in
Animals
,
Biochemical Engineering
,
Biochemistry
2006
Although glycosaminoglycans contribute to diverse physiological processes
1
,
2
,
3
,
4
, an understanding of their molecular mechanisms has been hampered by the inability to access homogeneous glycosaminoglycan structures. Here, we assembled well-defined chondroitin sulfate oligosaccharides using a convergent, synthetic approach that permits installation of sulfate groups at precise positions along the carbohydrate backbone. Using these defined structures, we demonstrate that specific sulfation motifs function as molecular recognition elements for growth factors and modulate neuronal growth. These results provide both fundamental insights into the role of sulfation and direct evidence for a 'sulfation code' whereby glycosaminoglycans encode functional information in a sequence-specific manner analogous to that of DNA, RNA and proteins.
Journal Article
Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature
2014
Background
Current views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants.
Results
We developed a new method for isolation of growing and mature root hair cells, analysed their transcriptome by microarray analysis, and further compared it with pollen and other single cell transcriptomics data. Principal component analysis shows a statistical relation between the datasets of RHs and PTs which is suggestive of a common transcriptional profile pattern for the apical growing cells in a plant, with overlapping profiles and clear similarities at the level of small GTPases, vesicle-mediated transport and various specific metabolic responses. Furthermore, cis-regulatory element analysis of co-regulated genes between RHs and PTs revealed conserved binding sequences that are likely required for the expression of genes comprising the apical signature. This included a significant occurrence of motifs associated to a defined transcriptional response upon anaerobiosis.
Conclusions
Our results suggest that maintaining apical growth mechanisms synchronized with energy yielding might require a combinatorial network of transcriptional regulation. We propose that this study should constitute the foundation for further genetic and physiological dissection of the mechanisms underlying apical growth of plant cells.
Journal Article
Factors That Affect the Enlargement of Bacterial Protoplasts and Spheroplasts
2020
Cell enlargement is essential for the microinjection of various substances into bacterial cells. The cell wall (peptidoglycan) inhibits cell enlargement. Thus, bacterial protoplasts/spheroplasts are used for enlargement because they lack cell wall. Though bacterial species that are capable of gene manipulation are limited, procedure for bacterial cell enlargement does not involve any gene manipulation technique. In order to prevent cell wall resynthesis during enlargement of protoplasts/spheroplasts, incubation media are supplemented with inhibitors of peptidoglycan biosynthesis such as penicillin. Moreover, metal ion composition in the incubation medium affects the properties of the plasma membrane. Therefore, in order to generate enlarged cells that are suitable for microinjection, metal ion composition in the medium should be considered. Experiment of bacterial protoplast or spheroplast enlargement is useful for studies on bacterial plasma membrane biosynthesis. In this paper, we have summarized the factors that influence bacterial cell enlargement.
Journal Article
Triggering of high-speed neurite outgrowth using an optical microheater
2015
Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.
Journal Article
Auxin-Dependent Cell Division and Cell Elongation. 1-Naphthaleneacetic Acid and 2,4-Dichlorophenoxyacetic Acid Activate Different Pathways
by
Campanoni, Prisca
,
Nick, Peter
in
2,4-D
,
2,4-Dichlorophenoxyacetic Acid
,
2,4-Dichlorophenoxyacetic Acid - pharmacology
2005
During exponential phase, the tobacco (Nicotiana tabacum) cell line cv Virginia Bright Italia-0 divides axially to produce linear cell files of distinct polarity. This axial division is controlled by exogenous auxin. We used exponential tobacco cv Virginia Bright Italia-0 cells to dissect early auxin signaling, with cell division and cell elongation as physiological markers. Experiments with 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated that these 2 auxin species affect cell division and cell elongation differentially; NAA stimulates cell elongation at concentrations that are much lower than those required to stimulate cell division. In contrast, 2,4-D promotes cell division but not cell elongation. Pertussis toxin, a blocker of heterotrimeric G-proteins, inhibits the stimulation of cell division by 2,4-D but does not affect cell elongation. Aluminum tetrafluoride, an activator of the G-proteins, can induce cell division at NAA concentrations that are not permissive for division and even in the absence of any exogenous auxin. The data are discussed in a model where the two different auxins activate two different pathways for the control of cell division and cell elongation.
Journal Article
Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness
by
Derbyshire, Paul
,
Findlay, Kim
,
McCann, Maureen C.
in
Anisotropy
,
Arabidopsis
,
Arabidopsis - cytology
2007
Field-emission scanning electron microscopy was used to measure wall thicknesses of different cell types in freeze-fractured hypocotyls of Arabidopsis thaliana. Measurements of uronic acid content, wall mass, and wall volume suggest that cell wall biosynthesis in this organ does not always keep pace with, and is not always tightly coupled to, elongation. In light-grown hypocotyls, walls thicken, maintain a constant thickness, or become thinner during elongation, depending upon the cell type and the stage of growth. In light-grown hypocotyls, exogenous gibberellic acid represses the extent of thickening and promotes cell elongation by both wall thinning and increased anisotropy during the early stages of hypocotyl elongation, and by increased wall deposition in the latter stages. Dark-grown hypocotyls, in the 48 h period between cold imbibition and seedling emergence, deposit very thick walls that subsequently thin in a narrow developmental window as the hypocotyl rapidly elongates. The rate of wall deposition is then maintained and keeps pace with cell elongation. The outer epidermal wall is always the thickest (∼1 μm) whereas the thinnest walls, about 50 nm, are found in inner cell layers. It is concluded that control of wall thickness in different cell types is tightly regulated during hypocotyl development, and that wall deposition and cell elongation are not invariably coupled.
Journal Article
Adipose Tissue–Specific Regulation of Angiotensinogen in Obese Humans and Mice: Impact of Nutritional Status and Adipocyte Hypertrophy
by
Masuzaki, Hiroaki
,
Katsurada, Akemi
,
Kozuka, Chisayo
in
adipocyte size
,
Adipocytes - drug effects
,
Adipocytes - metabolism
2010
Background The adipose tissue renin–angiotensin system (RAS) has been implicated in the pathophysiology of obesity and dysfunction of adipose tissue. However, neither regulation of angiotensinogen (AGT) expression in adipose tissue nor secretion of adipose tissue–derived AGT has been fully elucidated in humans. Methods Human subcutaneous abdominal adipose tissue (SAT) biopsies were performed for 46 subjects with a wide range of body mass index (BMI). Considering the mRNA level of AGT and indices of body fat mass, the amount of adipose tissue–derived AGT secretion (A-AGT-S) was estimated. Using a mouse model of obesity and weight reduction, plasma AGT levels were measured with a newly developed enzyme-linked immunosorbent assay (ELISA), and the contribution of A-AGT-S to plasma AGT levels was assessed. Results A-AGT-S was substantially increased in obese humans and the value was correlated with the plasma AGT level in mice. A-AGT-S and plasma AGT were higher in obese mice, whereas lower in mice with weight reduction. However, the AGT mRNA levels in the liver, kidney, and aorta were not altered in the mouse models. In both humans and mice, the AGT mRNA levels in mature adipocytes (MAs) were comparable to those in stromal-vascular cells. Coulter Multisizer analyses revealed that AGT mRNA levels in the MAs were inversely correlated with the average size of mature adipocytes. Conclusions This study demonstrates that adipose tissue–derived AGT is substantially augmented in obese humans, which may contribute considerably to elevated levels of circulating AGT. Adipose tissue–specific regulation of AGT provides a novel insight into the clinical implications of adipose tissue RAS in human obesity.
Journal Article
Opposing roles in neurite growth control by two seven-pass transmembrane cadherins
by
Hirano, Tomoo
,
Nabeshima, Yoichi
,
Kawaguchi, Shin-ya
in
Animal Genetics and Genomics
,
Animals
,
Behavioral Sciences
2007
The growth of neurites (axon and dendrite) should be appropriately regulated by their interactions in the development of nervous systems where a myriad of neurons and their neurites are tightly packed. We show here that mammalian seven-pass transmembrane cadherins Celsr2 and Celsr3 are activated by their homophilic interactions and regulate neurite growth in an opposing manner. Both gene-silencing and coculture assay with rat neuron cultures showed that Celsr2 enhanced neurite growth, whereas Celsr3 suppressed it, and that their opposite functions were most likely the result of a difference of a single amino acid residue in the transmembrane domain. Together with calcium imaging and pharmacological analyses, our results suggest that Celsr2 and Celsr3 fulfill their functions through second messengers, and that differences in the activities of the homologs results in opposite effects in neurite growth regulation.
Journal Article
Influence of insulin and glargine on outgrowth and number of circulating endothelial progenitor cells in type 2 diabetes patients: a partially double-blind, randomized, three-arm unicenter study
2014
Background
Endothelial progenitor cells (EPC) are bone marrow-derived cells which can undergo differentiation into endothelial cells and participate in endothelial repair and angiogenesis. Insulin facilitates this in vitro mediated by the IGF-1 receptor. Clinical trials showed that the number of circulating EPCs is influenced by glucose control and EPC are a predictor of cardiovascular death. To study direct effects of insulin treatment on EPCs in type 2 diabetes patients, add-on basal insulin treatment was compared to an escalation of oral medication aiming at similar glucose control between the groups.
Methods
55 patients with type 2 diabetes (61.6±5.9 years) on oral diabetes medication were randomized in a 2:2:1 ratio in 3 groups. Patients were treated additionally with insulin glargine (n=20), NPH insulin (n=22) or escalated with oral medication (n=13). Number of circulating EPC, EPC-outgrowth, intima media thickness, skin microvascular function and HbA1c were documented at baseline and/or after 4 weeks and 4 months.
Results
HbA1c at baseline was, 7.3+/-0.7% in the oral group, 7.3+/-0.9% and 7.5+/-0.7% in the glargine and NPH insulin respectively (p=0.713). HbA1c after 4 months decreased to 6.8+/-0.8%, 6.6+/-0.7% and 6.7+/-0.6%, in the oral, glargine and NPH insulin group respectively (p=0.61). FACS analysis showed no difference in number of circulating EPC between the groups after 4 weeks and 4 months. However, the outgrowth of EPCs as detected by colony forming assay was increased in the NPH insulin and glargine groups (29.2+/-6.4 and 29.4+/- 6.7 units respectively) compared to the group on oral medication (23.2+/-6.3, p=0.013) after 4 months of treatment. A significant decrease of IMT from 0.80mm (+/-0.14) at baseline to 0.76mm (+/-0.12) after 4 months could be observed in all patients only (p=0.03) with a trend towards a reduction of IMT after 4 months when all patients on insulin treatment were compared to the oral treatment group (p=0.06). Skin microvascular function revealed no differences between the groups (p=0.74).
Conclusion
The study shows that a 4-month treatment with add-on insulin significantly increases the outgrowth of EPC in patients with type 2 diabetes mellitus.
Trial registration
(Clinical Trials Identifier: NCT00523393).
Journal Article