Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,570 result(s) for "Cell Nucleus - drug effects"
Sort by:
Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress
Upon oxidative stress and aging, Nrf2 (NFE2-related factor2) triggers antioxidant defense genes to defends against homeostatic failure. Using human(h) or rat(r) lens epithelial cells (LECs) and aging human lenses, we showed that a progressive increase in oxidative load during aging was linked to a decline in Prdx6 expression. DNA binding experiments using gel-shift and ChIP assays demonstrated a progressive reduction in Nrf2/ARE binding (−357/−349) of Prdx6 promoter. The promoter (−918) with ARE showed a marked reduction in young vs aged hLECs, which was directly correlated to decreased Nrf2/ARE binding. A Nrf2 activator, Sulforaphane (SFN), augmented Prdx6, catalase and GST π expression in dose-dependent fashion, and halted Nrf2 dysregulation of these antioxidants. SFN reinforced Nrf2/DNA binding and increased promoter activities by enhancing expression and facilitating Nrf2 translocalization in nucleus. Conversely, promoter mutated at ARE site did not respond to SFN, validating the SFN-mediated restoration of Nrf2/ARE signaling. Furthermore, SFN rescued cells from UVB-induced toxicity in dose-dependent fashion, which was consistent with SFN’s dose-dependent activation of Nrf2/ARE interaction. Importantly, knockdown of Prdx6 revealed that Prdx6 expression was prerequisite for SFN-mediated cytoprotection. Collectively, our results suggest that loss of Prdx6 caused by dysregulation of ARE/Nrf2 can be attenuated through a SFN, to combat diseases associated with aging.
Objective assessment of changes in nuclear morphology and cell distribution following induction of apoptosis
Background To objectively measure changes in nuclear morphology and cell distribution following induction of apoptosis. Methods A spontaneously immortalized retinal pigment epithelial cell line (ARPE-19) was cultured for three days in DMEM/F12 with 10% fetal bovine serum followed by 24 hours incubation in staurosporine to induce apoptosis. Cells that were not incubated in staurosporine served as control. Caspase-3 expression in apoptotic cells was demonstrated by quantitative immunofluorescence. Nuclei were counterstained with DAPI. Assessments of nuclear morphology and cell distribution were performed using ImageJ software. Statistical analyses included Student’s t-test and Pearson’s correlation coefficient. Nearest neighbor analysis was used to assess cell nuclei distribution. Results Caspase-3 expression in staurosporine-incubated cells increased by 471% ± 182% compared to control ( P  = 0.014). Relative to the control, cells in the staurosporine-incubated cultures had smaller average nuclear area (68% ± 5%; P  < 0.001) and nuclear circumference (78 ± 3%; P  < 0.001), while nuclear form factor was larger (110% ± 1%; P  < 0.001). Cell nuclei from the staurosporine-group (R = 1.12 ± 0.04; P  < 0.01) and the control (R = 1.28 ± 0.03; P  < 0.01) were evenly spaced throughout the cultures, thereby demonstrating a non-clustered and non-random cell distribution. However, the staurosporine-incubated group had a significantly lower R-value compared to the control ( P  = 0.002), which indicated a move towards cell clustering following induction of apoptosis. Caspase-3 expression of each individual cell correlated significantly with the following morphological indicators: circumference of the nucleus divided by form factor ( r  = -0.475; P  < 0.001), nuclear area divided by form factor ( r  = -0.470; P  < 0.001), nuclear circumference ( r  = -0.469; P  < 0.001), nuclear area ( r  = -0.445; P  < 0.001), nuclear form factor ( r  = 0.410; P  < 0.001) and the nuclear area multiplied by form factor) ( r  = -0.377; P  < 0.001). Conclusions Caspase-3 positive apoptotic cells demonstrate morphological features that can be objectively quantified using freely available ImageJ software. A novel morphological indicator, defined as the nuclear circumference divided by form factor, demonstrated the strongest correlation with caspase-3 expression. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3271993311662947
Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms mediating these effects are poorly understood. Here we identify the glucocorticoid receptor (GR) target gene, serum- and glucocorticoid-inducible kinase 1 (SGK1), as one such mechanism. Using a human hippocampal progenitor cell line, we found that a small molecule inhibitor for SGK1, GSK650394, counteracted the cortisol-induced reduction in neurogenesis. Moreover, gene expression and pathway analysis showed that inhibition of the neurogenic Hedgehog pathway by cortisol was SGK1-dependent. SGK1 also potentiated and maintained GR activation in the presence of cortisol, and even after cortisol withdrawal, by increasing GR phosphorylation and GR nuclear translocation. Experiments combining the inhibitor for SGK1, GSK650394, with the GR antagonist, RU486, demonstrated that SGK1 was involved in the cortisol-induced reduction in progenitor proliferation both downstream of GR, by regulating relevant target genes, and upstream of GR, by increasing GR function. Corroborating the relevance of these findings in clinical and rodent settings, we also observed a significant increase of SGK1 mRNA in peripheral blood of drug-free depressed patients, as well as in the hippocampus of rats subjected to either unpredictable chronic mild stress or prenatal stress. Our findings identify SGK1 as a mediator for the effects of cortisol on neurogenesis and GR function, with particular relevance to stress and depression.
XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer
A multi-genomic approach identifies the addiction of KRAS -mutant lung cancer cells to XPO1-dependent nuclear export, offering a new therapeutic opportunity. Druggable targets in KRAS-driven tumours These authors use RNA interference screening of more than a hundred human non-small-cell lung cancer cell lines to identify phenotypic variations selectively required for the survival of cells carrying mutations in the KRAS gene. They find that KRAS-driven cancers are dependent on the nuclear export machinery. This vulnerability can be exploited by clinically available drugs targeting nuclear export receptor XPO-1, which inhibit tumour growth at least in part by promoting nuclear accumulation of NF-κB inhibitors. Conversely, some KRAS-driven tumours bypass this dependence through co-occurring mutations that result in YAP1 activation. This resistance mechanism can be countered by coadministration of the YAP1/TEAD inhibitor verteporfin. The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity 1 . However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS -mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS -mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo . The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5–Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS -mutant lung cancers, and can be overcome with the co-administration of a YAP1–TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.
Overexpression of OsMYB48-1, a Novel MYB-Related Transcription Factor, Enhances Drought and Salinity Tolerance in Rice
MYB-type transcription factors (TFs) play essential roles in plant growth, development and respond to environmental stresses. Role of MYB-related TFs of rice in drought stress tolerance is not well documented. Here, we report the isolation and characterization of a novel MYB-related TF, OsMYB48-1, of rice. Expression of OsMYB48-1 was strongly induced by polyethylene glycol (PEG), abscisic acid (ABA), H2O2, and dehydration, while being slightly induced by high salinity and cold treatment. The OsMYB48-1 protein was localized in the nucleus with transactivation activity at the C terminus. Overexpression of OsMYB48-1 in rice significantly improved tolerance to simulated drought and salinity stresses caused by mannitol, PEG, and NaCl, respectively, and drought stress was caused by drying the soil. In contrast to wild type plants, the overexpression lines exhibited reduced rate of water loss, lower malondialdehyde (MDA) content and higher proline content under stress conditions. Moreover, overexpression plants were hypersensitive to ABA at both germination and post-germination stages and accumulated more endogenous ABA under drought stress conditions. Further studies demonstrated that overexpression of OsMYB48-1 could regulate the expression of some ABA biosynthesis genes (OsNCED4, OsNCED5), early signaling genes (OsPP2C68, OSRK1) and late responsive genes (RAB21, OsLEA3, RAB16C and RAB16D) under drought stress conditions. Collectively, these results suggested that OsMYB48-1 functions as a novel MYB-related TF which plays a positive role in drought and salinity tolerance by regulating stress-induced ABA synthesis.
HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex
Nuclear entry of HIV-1 replication complexes through intact nuclear pore complexes is critical for successful infection. The host protein cleavage-and-polyadenylation-specificity-factor-6 (CPSF6) has been implicated in different stages of early HIV-1 replication. Applying quantitative microscopy of HIV-1 reverse-transcription and pre-integration-complexes (RTC/PIC), we show that CPSF6 is strongly recruited to nuclear replication complexes but absent from cytoplasmic RTC/PIC in primary human macrophages. Depletion of CPSF6 or lack of CPSF6 binding led to accumulation of HIV-1 subviral complexes at the nuclear envelope of macrophages and reduced infectivity. Two-color stimulated-emission-depletion microscopy indicated that under these circumstances HIV-1 complexes are retained inside the nuclear pore and undergo CA-multimer dependent CPSF6 clustering adjacent to the nuclear basket. We propose that nuclear entry of HIV-1 subviral complexes in macrophages is mediated by consecutive binding of Nup153 and CPSF6 to the hexameric CA lattice. Viruses are miniscule parasites that hijack the resources of a cell to make more of themselves. For many, this involves getting inside the nucleus, the fortress that protects the cell’s genetic information. To do so, viruses need to first find a way through a double-layered membrane called the nuclear envelope, which only opens up when a cell divides. Yet, the human immunodeficiency virus type 1 (HIV-1) can infect cells that no longer divide, and in which the nucleus’ walls never come down. The virus cores then head for the nuclear pores, heavily guarded holes in the nuclear envelope that allow the cell's own molecules to go in and out of the nucleus. But HIV-1 is too big to fit through, as its genetic information is encased in a capsid, a coat made of a complex assembly of proteins. However, research shows that these capsid proteins can bind to host proteins at the pore or even inside the nucleus. For example, the capsid protein can recognize the pore protein Nup153, or the nuclear protein CPSF6. These interactions could help the virus make its way in, but how these events unfold is still unclear. To explore this, Bejarano, Peng et al. attached fluorescent labels to HIV-1 and watched as it infected non-dividing cells. Rather than completely get rid of their capsid before they crossed the pores, the virus particles hung on to a large part of their lattice. This remaining coat then attached to CPSF6; when this protein was missing or could not bind to capsid proteins, the viral complexes got stuck in the nuclear pores. This suggests that the capsid lattice could first interact with Nup153 inside the pores: then, CPSF6 would take over, knocking Nup153 away and pulling HIV-1 into the nucleus. Armed with this knowledge, virologists and drug developers could try to block HIV-1 from entering the cell’s nucleus; they could also start to dissect how drugs that target the HIV-1 capsid work. Ultimately, HIV-1 may serve as a model to unravel how large objects can pass the nuclear pore, which may help us understand how molecules are constantly trafficked in and out of the nucleus.
Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy
The tumour microenvironment can influence its response to anticancer therapies; here, the enzyme FAK in endothelial cells is shown to have a role in the induction of a number of cytokines during chemotherapy or irradiation, which in turn protect tumours from DNA-damaging agents. FAK enzyme a tumour promoter The tumour microenvironment can influence the response to anti-cancer therapies, and for example render cancers resistant to chemotherapy. Kairbaan Hodivala-Dilke and colleagues now show that in endothelial cells of the tumour vasculature, the enzyme known as focal adhesion kinase (FAK) has a role in the induction of a number of cytokines during chemotherapy or irradiation, which in turn protect tumours from DNA-damaging agents. The authors show that tumours can be sensitized to chemotherapy and radiotherapy when FAK is inhibited in endothelial cells, offering a possible avenue to novel therapeutic combinations that can overcome chemoresistance. Chemoresistance is a serious limitation of cancer treatment 1 . Until recently, almost all the work done to study this limitation has been restricted to tumour cells 2 . Here we identify a novel molecular mechanism by which endothelial cells regulate chemosensitivity. We establish that specific targeting of focal adhesion kinase (FAK; also known as PTK2) in endothelial cells is sufficient to induce tumour-cell sensitization to DNA-damaging therapies and thus inhibit tumour growth in mice. The clinical relevance of this work is supported by our observations that low blood vessel FAK expression is associated with complete remission in human lymphoma. Our study shows that deletion of FAK in endothelial cells has no apparent effect on blood vessel function per se , but induces increased apoptosis and decreased proliferation within perivascular tumour-cell compartments of doxorubicin- and radiotherapy-treated mice. Mechanistically, we demonstrate that endothelial-cell FAK is required for DNA-damage-induced NF-κB activation in vivo and in vitro , and the production of cytokines from endothelial cells. Moreover, loss of endothelial-cell FAK reduces DNA-damage-induced cytokine production, thus enhancing chemosensitization of tumour cells to DNA-damaging therapies in vitro and in vivo . Overall, our data identify endothelial-cell FAK as a regulator of tumour chemosensitivity. Furthermore, we anticipate that this proof-of-principle data will be a starting point for the development of new possible strategies to regulate chemosensitization by targeting endothelial-cell FAK specifically.
YAP Promotes Ovarian Cancer Cell Tumorigenesis and Is Indicative of a Poor Prognosis for Ovarian Cancer Patients
YAP is a key component of the Hippo signaling pathway and plays a critical role in the development and progression of multiple cancer types, including ovarian cancer. However, the effects of YAP on ovarian cancer development in vivo and its downstream effectors remain uncertain. In this study we found that strong YAP expression was associated with poor ovarian cancer patient survival. Specifically, we showed for the first time that high YAP expression levels were positively correlated with TEAD4 gene expression, and their co-expression was a prognostic marker for poor ovarian cancer survival. Hyperactivation of YAP by mutating its five inhibitory phosphorylation sites (YAP-5SA) increased ovarian cancer cell proliferation, resistance to chemotherapeutic drugs, cell migration, and anchorage-independent growth. In contrast, expression of a dominant negative YAP mutant reversed these phenotypes in ovarian cancer cells both in vitro and in vivo. Our results suggested that YAP caused these effects by promoting an epithelial-to-mesenchymal transition. Thus, YAP promotes ovarian cancer cell growth and tumorigenesis both in vitro and in vivo. Further, high YAP and TEAD4 expression is a prognostic marker for ovarian cancer progression and a potential target for ovarian cancer treatment.
EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis
The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor −/− mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. We find that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. EpoR-regulation of cell size is independent of established red cell size regulation by iron. High erythropoietin (Epo) increases red cell size in wild-type mice and in human volunteers. The increase in mean corpuscular volume (MCV) outlasts the duration of Epo treatment and is not the result of increased reticulocyte number. Our work shows that EpoR signaling alters the relationship between cycling and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress. Maturing erythroblasts become smaller with every cell division. Here, the authors show that Epo stimulation promotes cell division and also generates larger red cells, and that this occurs in mouse and human cells, suggesting that red cell size could be a diagnostic marker for hypoxic stress.
Omega-3 Free Fatty Acids Suppress Macrophage Inflammasome Activation by Inhibiting NF-κB Activation and Enhancing Autophagy
The omega-3 (ω3) fatty acid docosahexaenoic acid (DHA) can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR) 4 (also known as GPR120), a G-protein coupled receptor (GPR) known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.