Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
409 result(s) for "Cell Phone - utilization"
Sort by:
Influence maximization in complex networks through optimal percolation
A rigorous method to determine the most influential superspreaders in complex networks is presented—involving the mapping of the problem onto optimal percolation along with a scalable algorithm for big-data social networks—showing, unexpectedly, that many weak nodes can be powerful influencers. Identifying influential nodes in complex networks In complex networks, some nodes are more important than others. The most important nodes are those whose elimination induces the network's collapse, and identifying them is crucial in many circumstances, for example, if searching for the most effective way to stop a disease from spreading. But this is a hard task, and most methods available for the purpose are essentially based on trial-and-error. Here, Flaviano Morone and Hernán Makse devise a rigorous method to determine the most influential nodes in random networks by mapping the problem onto optimal percolation and solving the optimization problem with an algorithm that the authors call 'collective influence'. They find that the number of optimal influencers is much smaller, and that low-degree nodes can play a much more important role in the network than previously thought. The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network 1 , or, if immunized, would prevent the diffusion of a large scale epidemic 2 , 3 . Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science 4 , 5 . Despite the vast use of heuristic strategies to identify influential spreaders 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix 15 of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase 16 .
Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach
Mobile phone use and the adoption of healthy lifestyle software apps (\"health apps\") are rapidly proliferating. There is limited information on the users of health apps in terms of their social demographic and health characteristics, intentions to change, and actual health behaviors. The objectives of our study were to (1) to describe the sociodemographic characteristics associated with health app use in a recent US nationally representative sample; (2) to assess the attitudinal and behavioral predictors of the use of health apps for health promotion; and (3) to examine the association between the use of health-related apps and meeting the recommended guidelines for fruit and vegetable intake and physical activity. Data on users of mobile devices and health apps were analyzed from the National Cancer Institute's 2015 Health Information National Trends Survey (HINTS), which was designed to provide nationally representative estimates for health information in the United States and is publicly available on the Internet. We used multivariable logistic regression models to assess sociodemographic predictors of mobile device and health app use and examine the associations between app use, intentions to change behavior, and actual behavioral change for fruit and vegetable consumption, physical activity, and weight loss. From the 3677 total HINTS respondents, older individuals (45-64 years, odds ratio, OR 0.56, 95% CI 0.47-68; 65+ years, OR 0.19, 95% CI 0.14-0.24), males (OR 0.80, 95% CI 0.66-0.94), and having degree (OR 2.83, 95% CI 2.18-3.70) or less than high school education (OR 0.43, 95% CI 0.24-0.72) were all significantly associated with a reduced likelihood of having adopted health apps. Similarly, both age and education were significant variables for predicting whether a person had adopted a mobile device, especially if that person was a college graduate (OR 3.30). Individuals with apps were significantly more likely to report intentions to improve fruit (63.8% with apps vs 58.5% without apps, P=.01) and vegetable (74.9% vs 64.3%, P<.01) consumption, physical activity (83.0% vs 65.4%, P<.01), and weight loss (83.4% vs 71.8%, P<.01). Individuals with apps were also more likely to meet recommendations for physical activity compared with those without a device or health apps (56.2% with apps vs 47.8% without apps, P<.01). The main users of health apps were individuals who were younger, had more education, reported excellent health, and had a higher income. Although differences persist for gender, age, and educational attainment, many individual sociodemographic factors are becoming less potent in influencing engagement with mobile devices and health app use. App use was associated with intentions to change diet and physical activity and meeting physical activity recommendations.
Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial
Objective Cardiac rehabilitation (CR) is pivotal in preventing recurring events of myocardial infarction (MI). This study aims to investigate the effect of a smartphone-based home service delivery (Care Assessment Platform) of CR (CAP-CR) on CR use and health outcomes compared with a traditional, centre-based programme (TCR) in post-MI patients. Methods In this unblinded randomised controlled trial, post-MI patients were randomised to TCR (n=60; 55.7±10.4 years) and CAP-CR (n=60; 55.5±9.6 years) for a 6-week CR and 6-month self-maintenance period. CAP-CR, delivered in participants’ homes, included health and exercise monitoring, motivational and educational material delivery, and weekly mentoring consultations. CAP-CR uptake, adherence and completion rates were compared with TCR using intention-to-treat analyses. Changes in clinical outcomes (modifiable lifestyle factors, biomedical risk factors and health-related quality of life) across baseline, 6 weeks and 6 months were compared within, and between, groups using linear mixed model regression. Results CAP-CR had significantly higher uptake (80% vs 62%), adherence (94% vs 68%) and completion (80% vs 47%) rates than TCR (p<0.05). Both groups showed significant improvements in 6-minute walk test from baseline to 6 weeks (TCR: 537±86–584±99 m; CAP-CR: 510±77–570±80 m), which was maintained at 6 months. CAP-CR showed slight weight reduction (89±20–88±21 kg) and also demonstrated significant improvements in emotional state (K10: median (IQR) 14.6 (13.4–16.0) to 12.6 (11.5–13.8)), and quality of life (EQ5D-Index: median (IQR) 0.84 (0.8–0.9) to 0.92 (0.9–1.0)) at 6 weeks. Conclusions This smartphone-based home care CR programme improved post-MI CR uptake, adherence and completion. The home-based CR programme was as effective in improving physiological and psychological health outcomes as traditional CR. CAP-CR is a viable option towards optimising use of CR services. Trial registration number ANZCTR12609000251224.
Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti
Population movements following disasters can cause important increases in morbidity and mortality. Without knowledge of the locations of affected people, relief assistance is compromised. No rapid and accurate method exists to track population movements after disasters. We used position data of subscriber identity module (SIM) cards from the largest mobile phone company in Haiti (Digicel) to estimate the magnitude and trends of population movements following the Haiti 2010 earthquake and cholera outbreak. Geographic positions of SIM cards were determined by the location of the mobile phone tower through which each SIM card connects when calling. We followed daily positions of SIM cards 42 days before the earthquake and 158 days after. To exclude inactivated SIM cards, we included only the 1.9 million SIM cards that made at least one call both pre-earthquake and during the last month of study. In Port-au-Prince there were 3.2 persons per included SIM card. We used this ratio to extrapolate from the number of moving SIM cards to the number of moving persons. Cholera outbreak analyses covered 8 days and tracked 138,560 SIM cards. An estimated 630,000 persons (197,484 Digicel SIM cards), present in Port-au-Prince on the day of the earthquake, had left 19 days post-earthquake. Estimated net outflow of people (outflow minus inflow) corresponded to 20% of the Port-au-Prince pre-earthquake population. Geographic distribution of population movements from Port-au-Prince corresponded well with results from a large retrospective, population-based UN survey. To demonstrate feasibility of rapid estimates and to identify areas at potentially increased risk of outbreaks, we produced reports on SIM card movements from a cholera outbreak area at its immediate onset and within 12 hours of receiving data. Results suggest that estimates of population movements during disasters and outbreaks can be delivered rapidly and with potentially high validity in areas with high mobile phone use.
Mobile technology habits: patterns of association among device usage, intertemporal preference, impulse control, and reward sensitivity
Mobile electronic devices are playing an increasingly pervasive role in our daily activities. Yet, there has been very little empirical research investigating how mobile technology habits might relate to individual differences in cognition and affect. The research presented in this paper provides evidence that heavier investment in mobile devices is correlated with a relatively weaker tendency to delay gratification (as measured by a delay discounting task) and a greater inclination toward impulsive behavior (i.e., weaker impulse control, assessed behaviorally and through self-report) but is not related to individual differences in sensitivity to reward. Analyses further demonstrated that individual variation in impulse control mediates the relationship between mobile technology usage and delay of gratification. Although based on correlational results, these findings lend some backing to concerns that increased use of portable electronic devices could have negative impacts on impulse control and the ability to appropriately valuate delayed rewards.
Scaling identity connects human mobility and social interactions
Massive datasets that capture human movements and social interactions have catalyzed rapid advances in our quantitative understanding of human behavior during the past years. One important aspect affecting both areas is the critical role space plays. Indeed, growing evidence suggests both our movements and communication patterns are associated with spatial costs that follow reproducible scaling laws, each characterized by its specific critical exponents. Although human mobility and social networks develop concomitantly as two prolific yet largely separated fields, we lack any known relationships between the critical exponents explored by them, despite the fact that they often study the same datasets. Here, by exploiting three different mobile phone datasets that capture simultaneously these two aspects, we discovered a new scaling relationship, mediated by a universal flux distribution, which links the critical exponents characterizing the spatial dependencies in human mobility and social networks. Therefore, the widely studied scaling laws uncovered in these two areas are not independent but connected through a deeper underlying reality.
Using Mobile Phone Data to Predict the Spatial Spread of Cholera
Effective response to infectious disease epidemics requires focused control measures in areas predicted to be at high risk of new outbreaks. We aimed to test whether mobile operator data could predict the early spatial evolution of the 2010 Haiti cholera epidemic. Daily case data were analysed for 78 study areas from October 16 to December 16, 2010. Movements of 2.9 million anonymous mobile phone SIM cards were used to create a national mobility network. Two gravity models of population mobility were implemented for comparison. Both were optimized based on the complete retrospective epidemic data, available only after the end of the epidemic spread. Risk of an area experiencing an outbreak within seven days showed strong dose-response relationship with the mobile phone-based infectious pressure estimates. The mobile phone-based model performed better (AUC 0.79) than the retrospectively optimized gravity models (AUC 0.66 and 0.74, respectively). Infectious pressure at outbreak onset was significantly correlated with reported cholera cases during the first ten days of the epidemic (p < 0.05). Mobile operator data is a highly promising data source for improving preparedness and response efforts during cholera outbreaks. Findings may be particularly important for containment efforts of emerging infectious diseases, including high-mortality influenza strains.
Smartphone App Use Among Medical Providers in ACGME Training Programs
The past decade has witnessed the advent of the smartphone, a device armed with computing power, mobility and downloadable “apps,” that has become commonplace within the medical field as both a personal and professional tool. The popularity of medically-related apps suggests that physicians use mobile technology to assist with clinical decision making, yet usage patterns have never been quantified. A digital survey examining smartphone and associated app usage was administered via email to all ACGME training programs. Data regarding respondent specialty, level of training, use of smartphones, use of smartphone apps, desired apps, and commonly used apps were collected and analyzed. Greater than 85% of respondents used a smartphone, of which the iPhone was the most popular (56%). Over half of the respondents reported using apps in their clinical practice; the most commonly used app types were drug guides (79%), medical calculators (18%), coding and billing apps (4%) and pregnancy wheels (4%). The most frequently requested app types were textbook/reference materials (average response: 55%), classification/treatment algorithms (46%) and general medical knowledge (43%). The clinical use of smartphones and apps will likely continue to increase, and we have demonstrated an absence of high-quality and popular apps despite a strong desire among physicians and trainees. This information should be used to guide the development of future healthcare delivery systems; expanded app functionality is almost certain but reliability and ease of use will likely remain major factors in determining the successful integration of apps into clinical practice.
Link communities reveal multiscale complexity in networks
Links key to network structure Network theory has become pervasive in all sectors of biology, from biochemical signalling patterns to the structure of human societies, but it has proved difficult to identify relevant functional communities because many nodes belong to several overlapping groups at once and are involved in hierarchical structures. Ahn et al ., rather than considering nodes combining to form a tree or dendrogram as the natural community structure, suggest that communities of linkage can explain both overlap and hierarchical organization in networks. They use mobile-phone company records, representing the call patterns and locations of millions of users, to show that branches of the hierarchy are geographically correlated at multiple levels (neighbourhood, city and region) while keeping significant overlap. Linkage dendograms of this type are also demonstrated in published data on protein–protein interactions and metabolic networks. Network theory has become pervasive in all sectors of biology, from biochemical signalling to human societies, but identification of relevant functional communities has been impaired by many nodes belonging to several overlapping groups at once, and by hierarchical structures. These authors offer a radically different viewpoint, focusing on links rather than nodes, which allows them to demonstrate that overlapping communities and network hierarchies are two faces of the same issue. Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society 1 , 2 , 3 . One crucial step when studying the structure and dynamics of networks is to identify communities 4 , 5 : groups of related nodes that correspond to functional subunits such as protein complexes 6 , 7 or social spheres 8 , 9 , 10 . Communities in networks often overlap 9 , 10 such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure 11 , 12 , 13 . However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein–protein interaction 6 , 7 , 14 and metabolic networks 11 , 15 , 16 , and show that a large social network 10 , 17 , 18 contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.
Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults - a prospective cohort study
Background Because of the quick development and widespread use of mobile phones, and their vast effect on communication and interactions, it is important to study possible negative health effects of mobile phone exposure. The overall aim of this study was to investigate whether there are associations between psychosocial aspects of mobile phone use and mental health symptoms in a prospective cohort of young adults. Methods The study group consisted of young adults 20-24 years old (n = 4156), who responded to a questionnaire at baseline and 1-year follow-up. Mobile phone exposure variables included frequency of use, but also more qualitative variables: demands on availability, perceived stressfulness of accessibility, being awakened at night by the mobile phone, and personal overuse of the mobile phone. Mental health outcomes included current stress, sleep disorders, and symptoms of depression. Prevalence ratios (PRs) were calculated for cross-sectional and prospective associations between exposure variables and mental health outcomes for men and women separately. Results There were cross-sectional associations between high compared to low mobile phone use and stress, sleep disturbances, and symptoms of depression for the men and women. When excluding respondents reporting mental health symptoms at baseline, high mobile phone use was associated with sleep disturbances and symptoms of depression for the men and symptoms of depression for the women at 1-year follow-up. All qualitative variables had cross-sectional associations with mental health outcomes. In prospective analysis, overuse was associated with stress and sleep disturbances for women, and high accessibility stress was associated with stress, sleep disturbances, and symptoms of depression for both men and women. Conclusions High frequency of mobile phone use at baseline was a risk factor for mental health outcomes at 1-year follow-up among the young adults. The risk for reporting mental health symptoms at follow-up was greatest among those who had perceived accessibility via mobile phones to be stressful. Public health prevention strategies focusing on attitudes could include information and advice, helping young adults to set limits for their own and others' accessibility.