Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
59,423
result(s) for
"Cell damage"
Sort by:
Transient Receptor Potential Ankyrin 1 (TRPA1) Channel Mediates Acrolein Cytotoxicity in Human Lung Cancer Cells
by
Kashiwagi, Keiko
,
Sakamoto, Akihiko
,
Terui, Yusuke
in
Alzheimer's disease
,
Amino acids
,
Apoptosis
2023
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective ion channel implicated in thermosensation and inflammatory pain. It has been reported that expression of the TRPA1 channel is induced by cigarette smoke extract. Acrolein found in cigarette smoke is highly toxic and known as an agonist of the TRPA1 channel. However, the role of TRPA1 in the cytotoxicity of acrolein remains unclear. Here, we investigated whether the TRPA1 channel is involved in the cytotoxicity of acrolein in human lung cancer A549 cells. The IC50 of acrolein in A549 cells was 25 μM, and acrolein toxicity increased in a concentration- and time-dependent manner. When the effect of acrolein on TRPA1 expression was examined, the expression of TRPA1 in A549 cells was increased by treatment with 50 μM acrolein for 24 h or 500 μM acrolein for 30 min. AP-1, a transcription factor, was activated in the cells treated with 50 μM acrolein for 24 h, while induction of NF-κB and HIF-1α was observed in the cells treated with 500 μM acrolein for 30 min. These results suggest that acrolein induces TRPA1 expression by activating these transcription factors. Overexpression of TRPA1 in A549 cells increased acrolein sensitivity and the level of protein-conjugated acrolein (PC-Acro), while knockdown of TRPA1 in A549 cells or treatment with a TRPA1 antagonist caused tolerance to acrolein. These findings suggest that acrolein induces the TRPA1 channel and that an increase in TRPA1 expression promotes the cytotoxicity of acrolein.
Journal Article
Gliosis induction on locus coeruleus in a living liver donor experimental model: A brief review
by
Hernandez-Baltazar, Daniel
,
Barrientos-Bonilla, Abril Alondra
,
Sánchez-García, Aurora Del Carmen
in
animal model
,
brain
,
cell damage
2024
Living Donor Liver Transplantation (LDLT) is a promising approach to treating end-stage liver diseases, however, some post-operatory complications such as pneumonia, bacteremia, urinary tract infections, and hepatic dysfunction have been reported. In murine models using partial hepatectomy (PHx), a model that emulates LDLT, it has been determined that the synthesis of hepatic cell proliferation factors that are associated with noradrenaline synthesis are produced in locus coeruleus (LC). In addition, studies have shown that PHx decreases GABA and 5-HT2A receptors, promotes loss of dendritic spines, and favors microgliosis in rat hippocampus. The GABA and serotonin-altered circuits suggest that catecholaminergic neurons such as dopamine and noradrenaline neurons, which are highly susceptible to cellular stress, can also be damaged. To understand post-transplant affections and to perform well-controlled studies it is necessary to know the potential causes that explain as a liver surgical procedure can produce brain damage. In this paper, we review several cellular processes that could induce gliosis in LC after rat PHx.
Journal Article
Elongational Stresses and Cells
by
Papavassiliou, Dimitrios V.
,
O’Rear, Edgar A.
,
Foster, Kylie M.
in
Animals
,
Artificial organs
,
Biofuels
2021
Fluid forces and their effects on cells have been researched for quite some time, especially in the realm of biology and medicine. Shear forces have been the primary emphasis, often attributed as being the main source of cell deformation/damage in devices like prosthetic heart valves and artificial organs. Less well understood and studied are extensional stresses which are often found in such devices, in bioreactors, and in normal blood circulation. Several microfluidic channels utilizing hyperbolic, abrupt, or tapered constrictions and cross-flow geometries, have been used to isolate the effects of extensional flow. Under such flow cell deformations, erythrocytes, leukocytes, and a variety of other cell types have been examined. Results suggest that extensional stresses cause larger deformation than shear stresses of the same magnitude. This has further implications in assessing cell injury from mechanical forces in artificial organs and bioreactors. The cells’ greater sensitivity to extensional stress has found utility in mechanophenotyping devices, which have been successfully used to identify pathologies that affect cell deformability. Further application outside of biology includes disrupting cells for increased food product stability and harvesting macromolecules for biofuel. The effects of extensional stresses on cells remains an area meriting further study.
Journal Article
Excessive hydrogen sulfide causes lung and brain tissue damage by promoting PARP1/Bax and C9 and inhibiting LAMB1
2022
Excessive hydrogen sulfide (H2S) causes serious damage to human organs and tissues. In this study, we aimed to explore the role and underlying mechanism of excessive H2S in brain and lung tissues. A H2S concentration of 100–800 pm promotes apoptosis and inflammation of brain and lung cells in ICR mice. Mechanistically, a H2S concentration of 100–800 pm upregulates PARP1 and Bax expression in a dose-dependent manner in vivo and in vitro, and functional gain-and-loss experiments verified that an excessive amount of H2S plays a pro-apoptotic role in HT22 and MML1 cells via regulation of PARP1 and Bax in vitro. By combining animal and cell experiments, we clarified that excess H2S promotes the inflammatory response of mouse brain and lung cells by promoting the expression of C9. In addition, the downregulation of LAMB1 by an excessive H2S concentration was confirmed using mass spectrometry and western blotting in vivo and in vitro. Combined with in vitro experiments, we found that an excessive H2S concentration promotes the expression of STAT1 and EGFR in HT22 and MML1 cells by inhibiting the expression of LAMB1. In summary, 100–800 pm H2S causes the brain and lung tissue damage in ICR mice, the underlying mechanisms include H2S induced apoptosis and inflammation of mouse brain and lung cells by upregulation of PARP1/Bax and C9, respectively, and H2S might induce fibrosis of mouse brain and lung cells by downregulation of LAMB1.
Journal Article
Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease
by
Wilkins, Simon
,
Hutton, Melanie L.
,
McMurrick, Paul J.
in
Animals
,
Bacterial Proteins - metabolism
,
Bacterial Proteins - toxicity
2020
Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, PLoS One 8, e73204 (2013); S. Kozar et al., Cell Stem Cell 13, 626–633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.
Journal Article
A review on cell damage, viability, and functionality during 3D bioprinting
2022
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
Journal Article
Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage
2023
Background
Kidney insults due to various pathogenic factors, such as trauma, infection, and inflammation, can cause tubular epithelial cell injury and death, leading to acute kidney injury and the transformation of acute kidney injury to chronic kidney disease. There is no definitive treatment available. In previous studies, human umbilical cord mesenchymal stem cells have been shown to promote kidney injury. In this preclinical study, we investigate the role and mechanism of human umbilical cord mesenchymal stem cell exosomes (HucMSC-Exos) on the repair of renal tubular epithelial cells after injury.
Methods
C57BL/6 mice underwent unilateral ureteral obstruction, and epithelial cell injury was induced in HK-2 cells by cisplatin. HucMSC-Exos were assessed in vivo and in vitro. The extent of renal cell injury, activation of necroptosis pathway, and mitochondrial quality-control-related factors were determined in different groups. We also analyzed the possible regulatory effector molecules in HucMSC-Exos by transcriptomics.
Results
HucMSC-Exo inhibited necroptosis after renal tubular epithelial cell injury and promoted the dephosphorylation of the S637 site of the
Drp1
gene by reducing the expression of PGAM5. This subsequently inhibited mitochondrial fission and maintained mitochondrial functional homeostasis, mitigating renal injury and promoting repair. In addition, HucMSC-Exo displayed a regulatory role by targeting
RIPK1
through miR-874-3p.
Conclusion
The collective findings of the present study demonstrate that HucMSC-Exos can regulate necroptosis through miR-874-3p to attenuate renal tubular epithelial cell injury and enhance repair, providing new therapeutic modalities and ideas for the treatment of AKI and the process of AKI to CKD transformation to mitigate renal damage.
Journal Article
Mechanistic insight into sevoflurane-associated developmental neurotoxicity
2022
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. Highlights1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects. 2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop. 3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Journal Article
Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers
by
Richardson, Jonathan P.
,
Förster, Toni M.
,
Jacobsen, Ilse D.
in
Antibiotics
,
Apoptosis
,
Candida albicans
2018
Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as
Candida albicans
, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of
C. albicans
across intestinal epithelia
in vitro
and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000
C. albicans
deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of
C. albicans
, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of
C. albicans
through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.
IMPORTANCE
Candida albicans
, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of
C. albicans
using
in vitro
cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key:
C. albicans
hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.
Candida albicans
, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of
C. albicans
using
in vitro
cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key:
C. albicans
hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.
Journal Article
Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies
by
Guo, Huiming
,
Fujino, Masayuki
,
Sheikh, IdrisAhmed
in
Animals
,
Antioxidants - metabolism
,
Biomarkers - metabolism
2016
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply and is, thus, extremely sensitive to hypoxia. Strong evidence indicates that oxidative stress plays an important role in pathogenesis and progression. Following hypoxia and ischemia, reactive oxygen species (ROS) production rapidly increases and overwhelms antioxidant defenses. A large excess of ROS will directly modify or degenerate cellular macromolecules, such as membranes, proteins, lipids, and DNA, and lead to a cascading inflammatory response, and protease secretion. These derivatives are involved in a complex interplay of multiple pathways (e.g., inflammation, apoptosis, autophagy, and necrosis) which finally lead to brain injury. In this review, we highlight the molecular mechanism for oxidative stress in HIE, summarize current research on therapeutic strategies utilized in combating oxidative stress, and try to explore novel potential clinical approaches.
Journal Article