Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
37,217 result(s) for "Cell isolation"
Sort by:
Integrated Microfluidics for Single‐Cell Separation and On‐Chip Analysis: Novel Applications and Recent Advances
From deciphering infection and disease mechanisms to identifying novel biomarkers and personalizing treatments, the characteristics of individual cells can provide significant insights into a variety of biological processes and facilitate decision‐making in biomedical environments. Conventional single‐cell analysis methods are limited in terms of cost, contamination risks, sample volumes, analysis times, throughput, sensitivity, and selectivity. Although microfluidic approaches have been suggested as a low‐cost, information‐rich, and high‐throughput alternative to conventional single‐cell isolation and analysis methods, limitations such as necessary off‐chip sample pre‐ and post‐processing as well as systems designed for individual workflows have restricted their applications. In this review, a comprehensive overview of recent advances in integrated microfluidics for single‐cell isolation and on‐chip analysis in three prominent application domains are provided: investigation of somatic cells (particularly cancer and immune cells), stem cells, and microorganisms. Also, the use of conventional cell separation methods (e.g., dielectrophoresis) in unconventional or novel ways, which can advance the integration of multiple workflows in microfluidic systems, is discussed. Finally, a critical discussion related to current limitations of integrated microfluidic single‐cell workflows and how they could be overcome is provided. Fully integrated microsystems have the potential to revolutionize single‐cell analysis by upholding common advantages of microfluidics while eliminating the need for off‐chip sample processing. In this manuscript, multiple emerging examples capable of isolation and analysis of different types of single cells are discussed. In these systems, content‐rich information is provided through the integration of various workflows on a single platform.
Optimizing the Seeding Density of Human Mononuclear Cells to Improve the Purity of Highly Proliferative Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) hold considerable promise for regenerative medicine. Optimization of the seeding density of mononuclear cells (MNCs) improves the proliferative and differentiation potential of isolated MSCs. However, the underlying mechanism is unclear. We cultured human bone marrow MNCs at various seeding densities (4.0 × 104, 1.25 × 105, 2.5 × 105, 6.0 × 105, 1.25 × 106 cells/cm2) and examined MSC colony formation. At lower seeding densities (4.0 × 104, 1.25 × 105 cells/cm2), colonies varied in diameter and density, from dense to sparse. In these colonies, the proportion of highly proliferative MSCs increased over time. In contrast, lower proliferative MSCs enlarged more rapidly. Senescent cells were removed using a short detachment treatment. We found that these mechanisms increase the purity of highly proliferative MSCs. Thereafter, we compared MSCs isolated under optimized conditions with a higher density (1.25 × 106 cells/cm2). MSCs under optimized conditions exhibited significantly higher proliferative and differentiation potential into adipocytes and chondrocytes, except for osteocytes. We propose the following conditions to improve MSC quality: (1) optimizing MNC seeding density to form single-cell colonies; (2) adjusting incubation times to increase highly proliferative MSCs; and (3) establishing a detachment processing time that excludes senescent cells.
Nondestructive Identification of Rare Trophoblastic Cells by Endoplasmic Reticulum Staining for Noninvasive Prenatal Testing of Monogenic Diseases
Noninvasive prenatal detection of monogenic diseases based on cell‐free DNA is hampered by challenges in obtaining a sufficient fraction and adequate quality of fetal DNA. Analyzing rare trophoblastic cells from Papanicolaou smears carrying the entire fetal genome provides an alternative method for noninvasive detection of monogenic diseases. However, intracellular labeling for identification of target cells can affect the quality of DNA in varying degrees. Here, a new approach is developed for nondestructive identification of rare fetal cells from abundant maternal cells based on endoplasmic reticulum staining and linear discriminant analysis (ER‐LDA). Compared with traditional methods, ER‐LDA has little effect on cell quality, allowing trophoblastic cells to be analyzed on the single‐cell level. Using ER‐LDA, high‐purity of trophoblastic cells can be identified and isolated at single cell resolution from 60 pregnancies between 4 and 38 weeks of gestation. Pathogenic variants, including –SEA/ deletion mutation and point mutations, in 11 fetuses at risk for α‐ or β‐thalassemia can be accurately detected by this test. The detection platform can also be extended to analyze the mutational profiles of other monogenic diseases. This simple, low‐cost, and noninvasive test can provide valuable fetal cells for fetal genotyping and holds promise for prenatal detection of monogenic diseases. An endoplasmic reticulum staining and linear discriminant analysis single‐cell test for detecting rare trophoblastic cells in Pap samples from pregnancies whose fetuses are at risk for monogenic disorders is presented. The antibody‐free, simple, low‐cost assay enables genomic analysis of fetal trophoblastic cells with high performance, which can serve as a promising tool for prenatal detection of monogenic diseases.
Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation
Autologous therapies using adipose-derived stromal vascular fraction (AD-SVFs) and adult adipose-derived mesenchymal stem cells (AD-MSCs) warrant careful preparation of the harvested adipose tissue. Currently, no standardized technique for this preparation exists. Processing quantitative standards (PQSs) define manufacturing quantitative variables (such as time, volume, and pressure). Processing qualitative standards (PQLSs) define the quality of the materials and methods in manufacturing. The purpose of the review was to use PQSs and PQLSs to report the in vivo and in vitro results obtained by different processing kits that use different procedures (enzymatic vs. non-enzymatic) to isolate human AD-SVFs/AD-MSCs. PQSs included the volume of fat tissue harvested and reagents used, the time/gravity of centrifugation, and the time, temperature, and tilt level/speed of incubation and/or centrifugation. PQLSs included the use of a collagenase, a processing time of 30 min, kit weight, transparency of the kit components, the maintenance of a closed sterile processing environment, and the use of a small centrifuge and incubating rocker. Using a kit with the PQSs and PQLSs described in this study enables the isolation of AD-MSCs that meet the consensus quality criteria. As the discovery of new critical quality attributes (CQAs) of AD-MSCs evolve with respect to purity and potency, adjustments to these benchmark PQSs and PQLs will hopefully isolate AD-MSCs of various CQAs with greater reproducibility, quality, and safety. Confirmatory studies will no doubt need to be completed.
Cell transcriptomic atlas of the non-human primate Macaca fascicularis
Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis . This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell–cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M .  fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs. A large-scale single-cell transcriptomic atlas of the non-human primate Macaca fascicularis encompasses over 1 million cells from 45 adult tissues.
Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation
Backgound Alveolar type 2 (AT2) cells play important roles in maintaining adult lung homeostasis. AT2 cells isolated from the lung have revealed the cell-specific functions of AT2 cells. Comprehensive molecular and transcriptional profiling of purified AT2 cells would be helpful for elucidating the underlying mechanisms of their cell-specific functions. To enable the further purification of AT2 cells, we aimed to discriminate AT2 cells from non-AT2 lung epithelial cells based on surface antigen expression via fluorescence activated cell sorting (FACS). Methods Single-cell suspensions obtained from enzymatically digested murine lungs were labeled for surface antigens (CD45/CD31/epithelial cell adhesion molecule (EpCAM)/ major histocompatibility complex class II (MHCII)) and for pro-surfactant protein C (proSP-C), followed by FACS analysis for surface antigen expression on AT2 cells. AT2 cells were sorted, and purity was evaluated by immunofluorescence and FACS. This newly developed strategy for AT2 cell isolation was validated in different strains and ages of mice, as well as in a lung injury model. Results FACS analysis revealed that EpCAM + epithelial cells existed in 3 subpopulations based on EpCAM and MHCII expression: EpCAM med MHCII + cells (Population1:P1), EpCAM hi MHCII − cells (P2), and EpCAM low MHCII − cells (P3). proSP-C + cells were enriched in P1 cells, and the purity values of the sorted AT2 cells in P1 were 99.0% by immunofluorescence analysis and 98.0% by FACS analysis. P2 cells were mainly composed of ciliated cells and P3 cells were composed of AT1 cells, respectively, based on the gene expression analysis and immunofluorescence. EpCAM and MHCII expression levels were not significantly altered in different strains or ages of mice or following lipopolysaccharide (LPS)-induced lung injury. Conclusions We successfully classified murine distal lung epithelial cells based on EpCAM and MHCII expression. The discrimination of AT2 cells from non-AT2 epithelial cells resulted in the isolation of pure AT2 cells. Highly pure AT2 cells will provide accurate and deeper insights into the cell-specific mechanisms of alveolar homeostasis.
Isolation of Circulating Tumor Cells by Dielectrophoresis
Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.
Select sequencing of clonally expanded CD8⁺ T cells reveals limits to clonal expansion
To permit the recognition of antigens, T cells generate a vast diversity of T cell receptor (TCR) sequences. Upon binding of the TCR to an antigen–MHC complex, T cells clonally expand to establish an immune response. To study antigen-specific T cell clonality, we have developed a method that allows selection of rare cells, based on RNA expression, before in-depth scRNA-seq (named SELECT-seq). We applied SELECT-seq to collect both TCR sequences and then transcriptomes from single cells of peripheral blood lymphocytes activated by a Mycobacterium tuberculosis (Mtb) lysate. TCR sequence analysis allowed us to preferentially select expanded conventional CD8⁺ T cells as well as invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells. The iNKT and MAIT cells have a highly similar transcriptional pattern, indicating that they carry out similar immunological functions and differ considerably from conventional CD8⁺ T cells. While there is no relationship between expression profiles and clonal expansion in iNKT or MAIT cells, highly expanded conventional CD8⁺ T cells down-regulate the interleukin 2 (IL-2) receptor alpha (IL2RA, or CD25) protein and show signs of senescence. This suggests inherent limits to clonal expansion that act to diversify the T cell response repertoire.
Spatially selective release of aptamer-captured cells by temperature mediation
Isolation of cells from heterogeneous biological samples is critical in both basic biological research and clinical diagnostics. Affinity-based methods, such as those that recognise cells by binding antibodies to cell membrane biomarkers, can be used to achieve specific cell isolation. Microfluidic techniques have been employed to achieve more efficient and effective cell isolation. By employing aptamers as surface-immobilised ligands, cells can be easily released and collected after specific capture. However, these methods still have limitations in cell release efficiency and spatial selectivity. This study presents an aptamer-based microfluidic device that not only achieves specific affinity cell capture, but also enables spatially selective temperature-mediated release and retrieval of cells without detectable damage. The specific cell capture is realised by using surface-patterned aptamers in a microchamber on a temperature-control chip. Spatially selective cell release is achieved by utilising a group of microheater and temperature sensor that restricts temperature changes, and therefore the disruption of cell–aptamer interactions, to a design-specified region. Experimental results with CCRF-CEM cells and sgc8c aptamers have demonstrated the specific cell capture and temperature-mediated release of selected groups of cells with negligible disruption to their viability.
Proteome alterations during clonal isolation of established human pancreatic cancer cell lines
Clonal isolation is an integral step of numerous workflows in genome editing and cell engineering. It comprises the isolation of a single progenitor cell from a defined cell line population with subsequent expansion to obtain a monoclonal cell population. This process is associated with transient loss of cell–cell contacts and absence of a multicellular microenvironment. Previous studies have revealed transcriptomic changes upon clonal isolation with cell line specific extent. Since transcriptome alterations are only partially reflected on the proteome level, we sought to investigate the impact of clonal isolation on the cellular proteome to a depth of > 6000 proteins in three established pancreatic cancer cell lines. We show that clonal isolation does have an impact on the cellular proteome, however, with cell line specific extent, affecting different biological processes, and also depending on the isolation method. We demonstrate a different impact of clonal isolation on mesenchymal- and epithelial-derived cell lines mainly affecting cell proliferation, metabolism, cell adhesion and cellular stress. The results bear relevance to the field of genomic editing and cell engineering and highlight the need to consider the impact of clonal isolation when interpreting data stemming from experiments that include this step.