Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,751 result(s) for "Cell-based"
Sort by:
Concise Review: Mesenchymal Stem Cell‐Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise
The development of mesenchymal stem cells (MSCs) as cell‐based drug delivery vectors for numerous clinical indications, including cancer, has significant promise. However, a considerable challenge for effective translation of these approaches is the limited tumor tropism and broad biodistribution observed using conventional MSCs, which raises concerns for toxicity to nontarget peripheral tissues (i.e., the bad). Consequently, there are a variety of synthetic engineering platforms in active development to improve tumor‐selective targeting via increased homing efficiency and/or specificity of drug activation, some of which are already being evaluated clinically (i.e., the good). Unfortunately, the lack of robust quantification and widespread adoption of standardized methodologies with high sensitivity and resolution has made accurate comparisons across studies difficult, which has significantly impeded progress (i.e., the ugly). Herein, we provide a concise review of active and passive MSC homing mechanisms and biodistribution postinfusion; in addition to in vivo cell tracking methodologies and strategies to enhance tumor targeting with a focus on MSC‐based drug delivery strategies for cancer therapy. Stem Cells Translational Medicine 2018;1–13 Mechanical barriers resulting from small vessels in the vascular network are a significant impediment to MSC trafficking via systemic circulation, which severely limits access of exogenously‐introduced MSCs to many target tissues, including tumors, and has implications for MSC‐based drug delivery strategies.
Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis. Graphical abstract
Remodeling Tumor‐Associated Neutrophils to Enhance Dendritic Cell‐Based HCC Neoantigen Nano‐Vaccine Efficiency
Hepatocellular carcinoma (HCC) commonly emerges in an immunologically “cold” state, thereafter protects it away from cytolytic attack by tumor‐infiltrating lymphocytes, resulting in poor response to immunotherapy. Herein, an acidic/photo‐sensitive dendritic cell (DCs)‐based neoantigen nano‐vaccine has been explored to convert tumor immune “cold” state into “hot”, and remodel tumor‐associated neutrophils to potentiate anticancer immune response for enhancing immunotherapy efficiency. The nano‐vaccine is constructed by SiPCCl2‐hybridized mesoporous silica with coordination of Fe(III)‐captopril, and coating with exfoliated membrane of matured DCs by H22‐specific neoantigen stimulation. The nano‐vaccines actively target H22 tumors and induce immunological cell death to boost tumor‐associated antigen release by the generation of excess 1O2 through photodynamic therapy, which act as in situ tumor vaccination to strengthen antitumor T‐cell response against primary H22 tumor growth. Interestingly, the nano‐vaccines are also home to lymph nodes to directly induce the activation and proliferation of neoantigen‐specific T cells to suppress the primary/distal tumor growth. Moreover, the acidic‐triggered captopril release in tumor microenvironment can polarize the protumoral N2 phenotype neutrophils to antitumor N1 phenotype for improving the immune effects to achieve complete tumor regression (83%) in H22‐bearing mice and prolong the survival time. This work provides an alternative approach for developing novel HCC immunotherapy strategies. Acidic/photo‐sensitive dendritic cell‐based neoantigen nano‐vaccine is developed to convert tumor immune “cold” into “hot”, and remodel tumor‐associated neutrophils for enhancing HCC immunotherapy. The nano‐vaccines actively targeted tumors to boost tumor‐associated antigen release, and home to lymph nodes to directly activate neoantigen‐specific T cells. The acidic‐triggered captopril release reduced the protumoral N2 neutrophils for synergetic suppression of the primary/distal tumor growth.
The association between sedentary behavior, exercise, and sleep disturbance: A mediation analysis of inflammatory biomarkers
Two related lifestyle behaviors associated with sleep disturbance are sedentary behavior and physical exercise participation. We aimed to use a population-based study to disentangle the relationships between sedentary behavior, exercise, and sleep disturbance based on blood-cell-based inflammatory biomarkers. A total of 22,599 participants from the National Health and Nutrition Examination Survey (NHANES) were included in the analyses. Sleep disturbance was assessed according to the NHANES questionnaire. Exercise participation ansd sedentary behavior were evaluated by the global physical activity questionnaire. The inflammatory biomarkers in the examination were white blood cell (WBC) count, neutrophil count (NEU), neutrophil-to-lymphocyte ratio (NLR), and systemic immune inflammation index (SII). A complex multistage sampling design and weighted multivariable logistic regression were applied for further analysis. Mediation models were constructed to figure out the mediating role of inflammatory biomarkers. The weighted prevalence of sleep disturbance was 24.17%. Sedentary behavior and exercise were associated with sleep disturbance after full adjustment [for sedentary behavior, OR (95% CI): 1.261 (1.154, 1.377); for exercise, OR (95% CI): 0.849 (0.757, 0.953)]. In severe sedentary behavior groups, the mitigation effect of exercise on sleep disturbance was observed [OR (95% CI): 0.687 (0.551, 0.857)]. For the mechanism, strong associations were detected between inflammatory biomarkers and sleep disturbance. Mediation analysis showed that WBC, NEU, NLR, and SII mediated the statistical association between sedentary behavior and sleep disturbance with proportions (%) of 2.09, 2.27, 1.76, and 0.82, respectively. Our data suggested that sedentary behavior was a risk factor for sleep disturbance. Blood-cell-based inflammatory biomarkers were an easily accessible and cost-effective strategy for identifying sleep disturbance and also significantly mediated the association between sedentary behavior and sleep disturbance. Exercise was proved to be effective in severe sedentary behavior groups to improve sleep disturbance symptoms, while the internal mechanism needed further exploration.
A draft human pangenome reference
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals 1 . These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample. An initial draft of the human pangenome is presented and made publicly available by the Human Pangenome Reference Consortium; the draft contains 94 de novo haplotype assemblies from 47 ancestrally diverse individuals.
Biological characteristics of human menstrual blood‐derived endometrial stem cells
Successful isolation of human endometrial stem cells from menstrual blood, namely menstrual blood‐derived endometrial stem cells (MenSCs), has provided enticing alternative seed cells for stem cell‐based therapy. MenSCs are enriched in the self‐regenerative tissue, endometrium, which shed along the periodic menstrual blood and thus their acquisition involves no physical invasiveness. However, the impact of the storage duration of menstrual blood prior to stem cell isolation, the age of the donor, the number of passages on the self‐renewing of MenSCs, the paracrine production of biological factors in MenSCs and expression of adhesion molecules on MenSCs remain elusive. In this study, we confirmed that MenSCs reside in shedding endometrium, and documented that up to 3 days of storage at 4°C has little impact on MenSCs, while the age of the donor and the number of passages are negatively associated with proliferation capacity of MenSCs. Moreover, we found that MenSCs were actually immune‐privileged and projected no risk of tumour formation. Also, we documented a lung‐ and liver‐dominated, spleen‐ and kidney‐involved organic distribution profile of MenSC 3 days after intravenous transfer into mice. At last, we suggested that MenSCs may have potentially therapeutic effects on diseases through paracrine effect and immunomodulation.
The potential of regulatory T cell-based therapies for alopecia areata
Cytotoxic T lymphocyte has been a concern for the etiopathogenesis of alopecia areata (AA), some recent evidence suggests that the regulatory T (T reg ) cell deficiency is also a contributing factor. In the lesional scalp of AA, T reg cells residing in the follicles are impaired, leading to dysregulated local immunity and hair follicle (HF) regeneration disorders. New strategies are emerging to modulate T reg cells’ number and function for autoimmune diseases. There is much interest to boost T reg cells in AA patients to suppress the abnormal autoimmunity of HF and stimulate hair regeneration. With few satisfactory therapeutic regimens available for AA, T reg cell-based therapies could be the way forward. Specifically, CAR-T reg cells and novel formulations of low-dose IL-2 are the alternatives.
Multiplicity of Mesenchymal Stromal Cells: Finding the Right Route to Therapy
Over the last decade, the acceleration in the clinical use of mesenchymal stromal cells (MSCs) has been nothing short of spectacular. Perhaps most surprising is how little we know about the \"MSC product.\" Although MSCs are being delivered to patients at an alarming rate, the regulatory requirements for MSC therapies (for example in terms of quality assurance and quality control) are nowhere near the expectations of traditional pharmaceuticals. That said, the standards that define a chemical compound or purified recombinant protein cannot be applied with the same stringency to a cell-based therapy. Biological processes are dynamic, adaptive and variable. Heterogeneity will always exist or emerge within even the most rigorously sorted clonal cell populations. With MSCs, perhaps more so than any other therapeutic cell, heterogeneity pervades at multiple levels, from the sample source to the single cell. The research and clinical communities collectively need to recognize and take steps to address this troublesome truth, to ensure that the promise of MSC-based therapies is fulfilled.
Overcoming therapeutic challenges: Successful management of a supposedly triple seronegative, refractory generalized myasthenia gravis patient with efgartigimod
Background and purpose This study was undertaken to highlight neonatal Fc receptor inhibition (efgartigimod) as a valuable therapeutic option for patients with refractory seronegative myasthenia gravis (MG) and to emphasize the concept that seronegative MG is greatly constrained by the limitations of currently available diagnostic methods and therapeutic measures. Methods We describe the first refractory, generalized MG (gMG) patient successfully treated with efgartigimod after testing negative on standard autoantibody detection tests. Results Our patient presented with severe fluctuating bulbar and generalized weakness, resulting in multiple myasthenic crises requiring intubation. After a 28‐year medical history of multiple failed lines of treatment, our patient was started on efgartigimod. Over five treatment cycles, a definite improvement in her clinical condition was observed (Myasthenia Gravis Foundation of America class: IIIb to IIb; MG‐Activities of Daily Living score: 11 to 0; MG‐Quality of Life 15 score: 30 to 0; Quantitative MG score: 28 to 6). Standard autoantibody detection tests failed to detect known pathogenic autoantibodies, but cell‐based assay (CBA) identified autoantibodies against clustered adult acetylcholine receptor (AChR). Conclusions In light of recent approvals of efgartigimod by the European Medicines Agency and US Food and Drug Administration exclusively for AChR‐positive gMG forms, our case highlights evidence suggesting that such an approach might be shortsighted and could limit therapeutic options for patients with refractory seronegative gMG. Additionally, introducing more sensitive analytical techniques, exemplified by CBA, may help bridge the gap between seronegative and seropositive patients. This represents an urgent unmet need for gMG patients, as the antibody profile dramatically influences the therapeutic approach.
Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay
The COVID-19 pandemic caused by SARS-CoV-2 is an unprecedentedly significant health threat, prompting the need for rapidly developing antiviral drugs for the treatment. Drug repurposing is currently one of the most tangible options for rapidly developing drugs for emerging and reemerging viruses. In general, drug repurposing starts with virtual screening of approved drugs employing various computational methods. However, the actual hit rate of virtual screening is very low, and most of the predicted compounds are false positives. Here, we developed a strategy for virtual screening with much reduced false positives through incorporating predocking filtering based on shape similarity and postdocking filtering based on interaction similarity. We applied this advanced virtual screening approach to repurpose 6,218 approved and clinical trial drugs for COVID-19. All 6,218 compounds were screened against main protease and RNA-dependent RNA polymerase of SARS-CoV-2, resulting in 15 and 23 potential repurposed drugs, respectively. Among them, seven compounds can inhibit SARS-CoV-2 replication in Vero cells. Three of these drugs, emodin, omipalisib, and tipifarnib, show anti-SARS-CoV-2 activities in human lung cells, Calu-3. Notably, the activity of omipalisib is 200-fold higher than that of remdesivir in Calu-3. Furthermore, three drug combinations, omipalisib/remdesivir, tipifarnib/omipalisib, and tipifarnib/remdesivir, showstrong synergistic effects in inhibiting SARS-CoV-2. Such drug combination therapy improves antiviral efficacy in SARS-CoV-2 infection and reduces the risk of each drug’s toxicity. The drug repurposing strategy reported here will be useful for rapidly developing drugs for treating COVID-19 and other viruses.