Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,006 result(s) for "Cellular Microenvironment - physiology"
Sort by:
The dormant cancer cell life cycle
The success of targeted therapies and immunotherapies has created optimism that cancers may be curable. However, not all patients respond, drug resistance is common and many patients relapse owing to dormant cancer cells. These rare and elusive cells can disseminate early and hide in specialized niches in distant organs before being reactivated to cause disease relapse after successful treatment of the primary tumour. Despite their importance, we are yet to leverage knowledge generated from experimental models and translate the potential of targeting dormant cancer cells to prevent disease relapse in the clinic. This is due, at least in part, to the lack of adherence to consensus definitions by researchers, limited models that faithfully recapitulate this stage of metastatic spread and an absence of interdisciplinary approaches. However, the application of new high-resolution, single-cell technologies is starting to revolutionize the field and transcend classical reductionist models of studying individual cell types or genes in isolation to provide a global view of the complex underlying cellular ecosystem and transcriptional landscape that controls dormancy. In this Perspective, we synthesize some of these recent advances to describe the hallmarks of cancer cell dormancy and how the dormant cancer cell life cycle offers opportunities to target not only the cancer but also its environment to achieve a durable cure for seemingly incurable cancers.This Perspective proposes operational definitions to define the hallmarks of cancer cell dormancy and, based on the latest evidence pertaining to the role of the microenvironment in regulating dormancy, presents key stages in the life cycle of a dormant cancer cell that could be targeted.
T cell regeneration after immunological injury
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.Reconstitution of the immune system after depletion by chemotherapy, radiotherapy, infection or transplantation is crucial to maintain protection from infection and to respond to immune-based therapy. Here the authors describe the ways in which a diverse T cell compartment can be restored, focusing on therapeutic strategies that drive the production of new T cells.
Mechanobiology of collective cell behaviours
Key Points In many biological situations in vivo , including tissue shaping during morphogenesis, tissue repair and cancer invasion, cells do not move as single bodies but as a collective. Two main mechanisms support collective dynamics: polarized collective cell migration and coordinated contractile processes of cell groups that involve multicellular actomyosin-based structures. In vitro wound-healing assays exploiting microfabricated devices have been models of choice to study collective cell behaviours. Such in vitro approaches are the most important methods to achieve multiscale analysis from the molecular to the multicellular level. In contrast to a single cell, collective cell migration relies not only on the interactions with the extracellular matrix but also with neighbouring cells. Coordinated movements strongly depend on intercellular interactions via mechanosensitive cadherin-based adhesions. Cellular coordination is a mechanoregulated multiscale process integrating events at the molecular, cellular and multicellular scales, and it occurs at a wide range of timescales, from milliseconds to minutes to days. Coordinated movements of cell collectives are important for morphogenesis, tissue regeneration and cancer cell dissemination. Recent studies, mainly using novel in vitro approaches, have provided new insights into the mechanisms governing this multicellular coordination, highlighting the key role of the mechanosensitivity of adherens junctions and mechanical cell–cell coupling in collective cell behaviours. The way in which cells coordinate their behaviours during various biological processes, including morphogenesis, cancer progression and tissue remodelling, largely depends on the mechanical properties of the external environment. In contrast to single cells, collective cell behaviours rely on the cellular interactions not only with the surrounding extracellular matrix but also with neighbouring cells. Collective dynamics is not simply the result of many individually moving blocks. Instead, cells coordinate their movements by actively interacting with each other. These mechanisms are governed by mechanosensitive adhesion complexes at the cell–substrate interface and cell–cell junctions, which respond to but also further transmit physical signals. The mechanosensitivity and mechanotransduction at adhesion complexes are important for regulating tissue cohesiveness and thus are important for collective cell behaviours. Recent studies have shown that the physical properties of the cellular environment, which include matrix stiffness, topography, geometry and the application of external forces, can alter collective cell behaviours, tissue organization and cell-generated forces. On the basis of these findings, we can now start building our understanding of the mechanobiology of collective cell movements that span over multiple length scales from the molecular to the tissue level.
The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction
Background Treatment of acute myocardial infarction with stem cell transplantation has achieved beneficial effects in many clinical trials. The bone marrow microenvironment of ST-elevation myocardial infarction (STEMI) patients has never been studied even though myocardial infarction is known to cause an imbalance in the acid-base status of these patients. The aim of this study was to assess if the blood gas levels in the bone marrow of STEMI patients affect the characteristics of the bone marrow cells (BMCs) and, furthermore, do they influence the change in cardiac function after autologous BMC transplantation. The arterial, venous and bone marrow blood gas concentrations were also compared. Methods Blood gas analysis of the bone marrow aspirate and peripheral blood was performed for 27 STEMI patients receiving autologous stem cell therapy after percutaneous coronary intervention. Cells from the bone marrow aspirate were further cultured and the bone marrow mesenchymal stem cell (MSC) proliferation rate was determined by MTT assay and the MSC osteogenic differentiation capacity by alkaline phosphatase (ALP) activity assay. All the patients underwent a 2D-echocardiography at baseline and 4 months after STEMI. Results As expected, the levels of pO 2 , pCO 2 , base excess and HCO 3 were similar in venous blood and bone marrow. Surprisingly, bone marrow showed significantly lower pH and Na + and elevated K + levels compared to arterial and venous blood. There was a positive correlation between the bone marrow pCO 2 and HCO 3 levels and MSC osteogenic differentiation capacity. In contrast, bone marrow pCO 2 and HCO 3 levels displayed a negative correlation with the proliferation rate of MSCs. Patients with the HCO 3 level below the median value exhibited a more marked change in LVEF after BMC treatment than patients with HCO 3 level above the median (11.13 ± 8.07% vs. 2.67 ± 11.89%, P = 0.014). Conclusions Low bone marrow pCO 2 and HCO 3 levels may represent the optimal environment for BMCs in terms of their efficacy in autologous stem cell therapy in STEMI patients.
Physical and mechanical regulation of macrophage phenotype and function
Macrophages are tissue-resident immune cells that play a critical role in maintaining homeostasis and fighting infection. In addition, these cells are involved in the progression of many pathologies including cancer and atherosclerosis. In response to a variety of microenvironmental stimuli, macrophages can be polarized to achieve a spectrum of functional phenotypes. This review will discuss some emerging evidence in support of macrophage phenotypic regulation by physical and mechanical cues. As alterations in the physical microenvironment often underlie pathophysiological states, an understanding of their effects on macrophage phenotype and function may help provide mechanistic insights into disease pathogenesis.
Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance
Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogen Aspergillus fumigatus forms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity within A. fumigatus biofilms. Oxygen gradients inevitably arise during A. fumigatus biofilm maturation and are both critical for, and the result of, A. fumigatus late-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base of A. fumigatus biofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.
Three-dimensional organotypic culture: experimental models of mammalian biology and disease
Key Points Three-dimensional (3D) culture protocols have been developed for diverse tissues, organs and disease states. 3D culture enables imaging of mammalian organogenesis at the cellular level. Genetic manipulation within 3D cultures can resolve the cellular and molecular basis of tissue-level phenotypes. 3D culture enables the independent evaluation of how distinct features of the microenvironment regulate organogenesis and disease. Induced pluripotent stem (iPS) cell-derived 3D cultures enable the generation and study of tissues derived from the somatic cells of a patient. 3D culture is a natural point of integration for fundamental, translational and clinical research. Recent advances in three-dimensional (3D) culture techniques have increased our understanding of the cellular mechanisms that drive epithelial tissue development, the genetic regulation of cell behaviours in epithelial tissues and the role of microenvironmental factors in normal development and disease. 3D culture can be used to build complex organs and to advance therapeutic approaches. Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells.
Leukocyte migration in the interstitial space of non-lymphoid organs
Key Points Optimized interstitial migration of leukocytes is necessary for their timely arrival at sites of tissue injury and microbial assault. This process is regulated by a multitude of cell-intrinsic and environmental factors. Intravital imaging studies have shed new light on the dynamics and regulation of interstitial leukocyte migration in non-lymphoid organs. These studies are discussed in this Review, with a focus on neutrophils and T cells. The actin cytoskeleton regulates the formation of a polarized cellular shape, which defines the 'amoeboid' migration mode of leukocytes in the interstitial space. Transendothelial migration of leukocytes and their entry into the interstitial space is regulated by the perivascular extravasation unit (PVEU), which is composed of endothelial cells, pericytes, perivascular macrophages, mast cells and the basement membrane. The PVEU provides physical and biochemical guidance for leukocytes during and after diapedesis. Neutrophil migration towards a focus of tissue injury is regulated by a multistep process defined by scouting, amplification and stabilization phases. Scouting is the initial process whereby scarce neutrophils accumulate at the focus. In a feedforward loop, these cells then attract waves of additional neutrophils, which form a cluster around the focus in order to contain tissue injury and pathogens. Directional decision making by migrating neutrophils is mediated by temporally and spatially coordinated gradients of chemoattractants and chemorepellents within tissues, and by physical guidance structures provided, for example, by pericytes. Multiple competing signals are integrated by intracellular signalling molecules in crawling neutrophils. Migrating effector T cell populations scan tissues for the presence of antigen. Signals delivered by the T cell receptor regulate both migratory stops — which are necessary for target cell interactions — and also the highly active migratory phenotype of T cells. Investigation of T cell population dynamics suggests that Lévy walk behaviour underlies the search strategies of T cells, and optimizes target screening behaviour. Functional impairment of T cells, such as a tolerized or exhausted state, is paralleled by impaired migration. Co-stimulatory and co-inhibitory pathways have been implicated in regulating the migration of functionally impaired T cells. A variety of innate immune cell subsets display active screening behaviour in non-lymphoid organs, which underlies the rapid detection of tissue debris or pathogens. This Review follows neutrophils and T cells as they journey from the blood into tissues in search of sites of infection or injury. It highlights the mediators, which form temporally and spatially coordinated gradients within the tissues, and the mechanisms, including physical structures, that guide this directional migration. Leukocyte migration through interstitial tissues is essential for mounting a successful immune response. Interstitial motility is governed by a vast array of cell-intrinsic and cell-extrinsic factors that together ensure the proper positioning of immune cells in the context of specific microenvironments. Recent advances in imaging modalities, in particular intravital confocal and multi-photon microscopy, have helped to expand our understanding of the cellular and molecular mechanisms that underlie leukocyte navigation in the extravascular space. In this Review, we discuss the key factors that regulate leukocyte motility within three-dimensional environments, with a focus on neutrophils and T cells in non-lymphoid organs.
Microenvironment‐Based Diabetic Foot Ulcer Nanomedicine
Diabetic foot ulcers (DFU), one of the most serious complications of diabetes, are essentially chronic, nonhealing wounds caused by diabetic neuropathy, vascular disease, and bacterial infection. Given its pathogenesis, the DFU microenvironment is rather complicated and characterized by hyperglycemia, ischemia, hypoxia, hyperinflammation, and persistent infection. However, the current clinical therapies for DFU are dissatisfactory, which drives researchers to turn attention to advanced nanotechnology to address DFU therapeutic bottlenecks. In the last decade, a large number of multifunctional nanosystems based on the microenvironment of DFU have been developed with positive effects in DFU therapy, forming a novel concept of “DFU nanomedicine”. However, a systematic overview of DFU nanomedicine is still unavailable in the literature. This review summarizes the microenvironmental characteristics of DFU, presents the main progress of wound healing, and summaries the state‐of‐the‐art therapeutic strategies for DFU. Furthermore, the main challenges and future perspectives in this field are discussed and prospected, aiming to fuel and foster the development of DFU nanomedicines successfully. The definition of “diabetic foot ulcer (DFU) nanomedicine” is first introduced to bridge “DFU” and “nanomaterials”. Then, this review's focus is be placed on the normal wound healing process, the complicated microenvironment of DFU, and the construction and treatment strategies of various nanosystems in “DFU nanomedicine”. Last, the opportunities and challenges of microenvironment‐based “DFU nanomedicine” are discussed to drive its development.
Extracellular Matrix, a Hard Player in Angiogenesis
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.