Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21,722
result(s) for
"Cellular structure"
Sort by:
Comparison of Mechanical Properties and Energy Absorption of Sheet-Based and Strut-Based Gyroid Cellular Structures with Graded Densities
by
Li, Dawei
,
Xie, Yi Min
,
Liao, Wenhe
in
Additive manufacturing
,
Biomimetics
,
Cellular structure
2019
Bio-inspired functionally graded cellular materials (FGCM) have improved performance in energy absorption compared with a uniform cellular material (UCM). In this work, sheet-based and strut-based gyroid cellular structures with graded densities are designed and manufactured by stereo-lithography (SLA). For comparison, uniform structures are also designed and manufactured, and the graded structures are generated with different gradients. The mechanical behaviors of these structures under compressive loads are investigated. Furthermore, the anisotropy and effective elastic modulus of sheet-based and strut-based unit gyroid cellular structures are estimated by a numerical homogenization method. On the one hand, it is found from the numerical results that the sheet-based gyroid tends to be isotropic, and the elastic modulus of sheet-based gyroid is larger than the strut-based gyroid at the same volume fraction. On the other hand, the graded cellular structure has novel deformation and mechanical behavior. The uniform structure exhibits overall deformation and collapse behavior, whereas the graded cellular structure shows layer-by-layer deformation and collapse behavior. Furthermore, the uniform sheet-based gyroid is not only stiffer but also better in energy absorption capacity than the uniform strut-based gyroid structure. Moreover, the graded cellular structures have better energy absorption capacity than the uniform structures. These significant findings indicate that sheet-based gyroid cellular structure with graded densities have potential applications in various industrial applications, such as in crashworthiness.
Journal Article
Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans
by
Goosmann, Christian
,
Nacken, Wolfgang
,
Ermert, David
in
Abdominal Abscess - immunology
,
Abdominal Abscess - microbiology
,
Analysis of Variance
2009
Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo.
Journal Article
Long time-lapse nanoscopy with spontaneously blinking membrane probes
2017
Super-resolution imaging of the dynamics of organelle structures in live cells is facilitated by blinking, far-red dyes.
Imaging cellular structures and organelles in living cells by long time-lapse super-resolution microscopy is challenging, as it requires dense labeling, bright and highly photostable dyes, and non-toxic conditions. We introduce a set of high-density, environment-sensitive (HIDE) membrane probes, based on the membrane-permeable silicon-rhodamine dye HMSiR, that assemble
in situ
and enable long time-lapse, live-cell nanoscopy of discrete cellular structures and organelles with high spatiotemporal resolution. HIDE-enabled nanoscopy movies span tens of minutes, whereas movies obtained with labeled proteins span tens of seconds. Our data reveal 2D dynamics of the mitochondria, plasma membrane and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum, in living cells. HIDE probes also facilitate acquisition of live-cell, two-color, super-resolution images, expanding the utility of nanoscopy to visualize dynamic processes and structures in living cells.
Journal Article
A new approach to the design and optimisation of support structures in additive manufacturing
2013
Support structures are required in several additive manufacturing (AM) processes to sustain overhanging parts, in particular for the production of metal components. Supports are typically hollow or cellular structures to be removed after metallic AM, thus they represent a considerable waste in terms of material, energy and time employed for their construction and removal. This study presents a new approach to the design of support structures that optimise the part built orientation and the support cellular structure. This approach applies a new optimisation algorithm to use pure mathematical 3D implicit functions for the design and generation of the cellular support structures including graded supports. The implicit function approach for support structure design has been proved to be very versatile, as it allows geometries to be simply designed by pure mathematical expressions. This way, different cellular structures can be easily defined and optimised, in particular to have graded structures providing more robust support where the object’s weight concentrate, and less support elsewhere. Evaluation of support optimisation for a complex shape geometry revealed that the new approach presented can achieve significant materials savings, thus increasing the sustainability and efficiency of metallic AM.
Journal Article
Adaptive Conformal Cooling of Injection Molds Using Additively Manufactured TPMS Structures
by
Oh, Seo-Hyeon
,
Park, Keun
,
Ha, Jong-Wook
in
3-D printers
,
Additive manufacturing
,
Aluminum alloys
2022
In injection molding, cooling channels are usually manufactured with a straight shape, and thus have low cooling efficiency for a curved mold. Recently, additive manufacturing (AM) was used to fabricate conformal cooling channels that could maintain a consistent distance from the curved surface of the mold. Because this conformal cooling channel was designed to obtain a uniform temperature on the mold surface, it could not efficiently cool locally heated regions (hot spots). This study developed an adaptive conformal cooling method that supports localized-yet-uniform cooling for the heated region by employing micro-cellular cooling structures instead of the typical cooling channels. An injection molding simulation was conducted to predict the locally heated region, and a mold core was designed to include a triply periodic minimal surface (TPMS) structure near the heated region. Two biomimetic TPMS structures, Schwarz-diamond and gyroid structures, were designed and fabricated using a digital light processing (DLP)-type polymer AM process. Various design parameters of the TPMS structures, the TPMS shapes and base coordinates, were investigated in terms of the conformal cooling performance. The mold core with the best TPMS design was fabricated using a powder-bed fusion (PBF)-type metal AM process, and injection molding experiments were conducted using the additively manufactured mold core. The developed mold with TPMS cooling achieved a 15 s cooling time to satisfy the dimensional tolerance, which corresponds to a 40% reduction in comparison with that of the conventional cooling (25 s).
Journal Article
Manipulation of Host Hepatocytes by the Malaria Parasite for Delivery into Liver Sinusoids
by
Rennenberg, Annika
,
Retzlaff, Silke
,
Menard, Robert
in
Animals
,
Biological and medical sciences
,
blood flow
2006
The merozoite stage of the malaria parasite that infects erythrocytes and causes the symptoms of the disease is initially formed inside host hepatocytes. However, the mechanism by which hepatic merozoites reach blood vessels (sinusoids) in the liver and escape the host immune system before invading erythrocytes remains unknown. Here, we show that parasites induce the death and the detachment of their host hepatocytes, followed by the budding of parasite-filled vesicles (merosomes) into the sinusoid lumen. Parasites simultaneously inhibit the exposure of phosphatidylserine on the outer leaflet of host plasma membranes, which act as \"eat me\" signals to phagocytes. Thus, the hepatocyte-derived merosomes appear to ensure both the migration of parasites into the bloodstream and their protection from host immunity.
Journal Article
Load Distribution on PET-G 3D Prints of Honeycomb Cellular Structures under Compression Load
by
Sánchez-Rodríguez, Elvia P.
,
McShane, Graham J.
,
Basurto-Vázquez, Olimpia
in
3-D printers
,
Cellular structure
,
Compression loads
2021
Energy resulting from an impact is manifested through unwanted damage to objects or persons. New materials made of cellular structures have enhanced energy absorption (EA) capabilities. The hexagonal honeycomb is widely known for its space-filling capacity, structural stability, and high EA potential. Additive manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, with a focus on improving the mechanical and structural characteristics of three-dimensional (3D)-printed models to create complex quality parts that satisfy design and mechanical requirements. In this study, 3D honeycomb structures of novel material polyethylene terephthalate glycol (PET-G) were fabricated by the fused deposition modeling (FDM) method with different infill density values (30%, 70%, and 100%) and printing orientations (edge, flat, and upright). The effectiveness for EA of the design and the effect of the process parameters of infill density and layer printing orientation were investigated by performing in-plane compression tests, and the set of parameters that produced superior results for better EA was determined by analyzing the area under the curve and the welding between the filament layers in the printed object via FDM. The results showed that the printing parameters implemented in this study considerably affected the mechanical properties of the 3D-printed PET-G honeycomb structure. The structure with the upright printing direction and 100% infill density exhibited an extension to delamination and fragmentation, thus, a desirable performance with a long plateau region in the load–displacement curve and major absorption of energy.
Journal Article
Difficulties in Differentiating Coronaviruses from Subcellular Structures in Human Tissues by Electron Microscopy
by
Miller, Sara E.
,
Bullock, Hannah A.
,
Martines, Roosecelis B.
in
Analysis
,
Biopsy - methods
,
Cellular Structures - classification
2021
Efforts to combat the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have placed a renewed focus on the use of transmission electron microscopy for identifying coronavirus in tissues. In attempts to attribute pathology of COVID-19 patients directly to tissue damage caused by SARS-CoV-2, investigators have inaccurately reported subcellular structures, including coated vesicles, multivesicular bodies, and vesiculating rough endoplasmic reticulum, as coronavirus particles. We describe morphologic features of coronavirus that distinguish it from subcellular structures, including particle size range (60-140 nm), intracellular particle location within membrane-bound vacuoles, and a nucleocapsid appearing in cross section as dense dots (6-12 nm) within the particles. In addition, although the characteristic spikes of coronaviruses may be visible on the virus surface, especially on extracellular particles, they are less evident in thin sections than in negative stain preparations.
Journal Article
Scale-separated VCUT level set method for designing the graded stochastic Voronoi cellular structure
by
Zhang, Ran
,
Chu, Xihua
,
Liu, Hui
in
Anisotropy
,
Cellular structure
,
Computational Mathematics and Numerical Analysis
2023
Cellular structures have gained popularity in the modern industrial fields for their lightweight and high specific strength. The optimization design methods for the cellular structure were developed simultaneously with the advancement of additive manufacturing. The scale-separated multiscale methods have been widely used based on the homogenization approach. Most scale-separated optimization designs focus on the configuration of the cellular structure, especially the non-stochastic cellular structure. However, it posed disadvantages in structure anisotropy and poor connectivity of the adjacent microstructure. In this work, a scale-separated variable cutting (VCUT) level set method for designing the graded stochastic Voronoi cellular structure is proposed. The method contains three parts: the analysis of the stochastic Voronoi microstructure, the optimization of the macrostructure, and the reconstruction of the full-scale graded Voronoi cellular structure. The proposed method can guarantee good connectivity between the adjacent microstructure and can be applied in the optimization of the design domain with arbitrary shapes and boundaries. Numerical examples are given to demonstrate the effectiveness and advantage of the developed method for designing the stochastic multiscale structure.
Journal Article
Automatic localization and identification of mitochondria in cellular electron cryo-tomography using faster-RCNN
by
Freyberg, Zachary
,
Lv, Hairong
,
Zhou, Bo
in
Algorithms
,
Artificial intelligence
,
Artificial neural networks
2019
Background
Cryo-electron tomography (cryo-ET) enables the 3D visualization of cellular organization in near-native state which plays important roles in the field of structural cell biology. However, due to the low signal-to-noise ratio (SNR), large volume and high content complexity within cells, it remains difficult and time-consuming to localize and identify different components in cellular cryo-ET. To automatically localize and recognize
in situ
cellular structures of interest captured by cryo-ET, we proposed a simple yet effective automatic image analysis approach based on Faster-RCNN.
Results
Our experimental results were validated using
in situ
cyro-ET-imaged mitochondria data. Our experimental results show that our algorithm can accurately localize and identify important cellular structures on both the 2D tilt images and the reconstructed 2D slices of cryo-ET. When ran on the mitochondria cryo-ET dataset, our algorithm achieved Average Precision >0.95. Moreover, our study demonstrated that our customized pre-processing steps can further improve the robustness of our model performance.
Conclusions
In this paper, we proposed an automatic Cryo-ET image analysis algorithm for localization and identification of different structure of interest in cells, which is the first Faster-RCNN based method for localizing an cellular organelle in Cryo-ET images and demonstrated the high accuracy and robustness of detection and classification tasks of intracellular mitochondria. Furthermore, our approach can be easily applied to detection tasks of other cellular structures as well.
Journal Article