Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
464
result(s) for
"Centrioles - metabolism"
Sort by:
Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity
2018
Cilia are evolutionarily conserved structures with many sensory and motility-related functions. The ciliary base, composed of the basal body and the transition zone, is critical for cilia assembly and function, but its contribution to cilia diversity remains unknown. Hence, we generated a high-resolution structural and biochemical atlas of the ciliary base of four functionally distinct neuronal and sperm cilia types within an organism,
Drosophila melanogaster
. We uncovered a common scaffold and diverse structures associated with different localization of 15 evolutionarily conserved components. Furthermore, CEP290 (also known as NPHP6) is involved in the formation of highly diverse transition zone links. In addition, the cartwheel components SAS6 and ANA2 (also known as STIL) have an underappreciated role in basal body elongation, which depends on BLD10 (also known as CEP135). The differential expression of these cartwheel components contributes to diversity in basal body length. Our results offer a plausible explanation to how mutations in conserved ciliary base components lead to tissue-specific diseases.
Using electron and three-dimensional structured illumination microscopy methods, Jana et al. characterize the ciliary base in four different cilia types in
Drosophila
, discovering structural and protein component differences that may be linked to the diversified functions of cilia.
Journal Article
Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM)
by
Reinhard, Sebastian
,
Sauer, Markus
,
Guichard, Paul
in
631/1647/328/2238
,
631/57/2265
,
639/624/1111/55
2020
Expansion microscopy (ExM) enables super-resolution fluorescence imaging of physically expanded biological samples with conventional microscopes. By combining ExM with single-molecule localization microscopy (SMLM) it is potentially possible to approach the resolution of electron microscopy. However, current attempts to combine both methods remained challenging because of protein and fluorophore loss during digestion or denaturation, gelation, and the incompatibility of expanded polyelectrolyte hydrogels with photoswitching buffers. Here we show that re-embedding of expanded hydrogels enables
d
STORM imaging of expanded samples and demonstrate that post-labeling ExM resolves the current limitations of super-resolution microscopy. Using microtubules as a reference structure and centrioles, we demonstrate that post-labeling Ex-SMLM preserves ultrastructural details, improves the labeling efficiency and reduces the positional error arising from linking fluorophores into the gel thus paving the way for super-resolution imaging of immunolabeled endogenous proteins with true molecular resolution.
Previous attempts to combine expansion microscopy (ExM) and single molecule localisation microscopy (SMLM) have proved challenging. Here the authors show that post-labelling Ex-SMLM improves labelling efficiency, reduces linkage error, and preserves ultrastructural details.
Journal Article
Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components
2018
Distal appendages (DAPs) are nanoscale, pinwheel-like structures protruding from the distal end of the centriole that mediate membrane docking during ciliogenesis, marking the cilia base around the ciliary gate. Here we determine a super-resolved multiplex of 16 centriole-distal-end components. Surprisingly, rather than pinwheels, intact DAPs exhibit a cone-shaped architecture with components filling the space between each pinwheel blade, a new structural element we term the distal appendage matrix (DAM). Specifically, CEP83, CEP89, SCLT1, and CEP164 form the backbone of pinwheel blades, with CEP83 confined at the root and CEP164 extending to the tip near the membrane-docking site. By contrast, FBF1 marks the distal end of the DAM near the ciliary membrane. Strikingly, unlike CEP164, which is essential for ciliogenesis, FBF1 is required for ciliary gating of transmembrane proteins, revealing DAPs as an essential component of the ciliary gate. Our findings redefine both the structure and function of DAPs.
Distal appendages (DAPs) at the cilia base mediate membrane docking during ciliogenesis. Here the authors use super-resolution microscopy to map 16 centriole distal end components, revealing the structure of the backbone of the DAP, as well as a previously undescribed distal appendage matrix.
Journal Article
The Cep57-pericentrin module organizes PCM expansion and centriole engagement
2019
Centriole duplication occurs once per cell cycle to ensure robust formation of bipolar spindles and chromosome segregation. Each newly-formed daughter centriole remains connected to its mother centriole until late mitosis. The disengagement of the centriole pair is required for centriole duplication. However, the mechanisms underlying centriole engagement remain poorly understood. Here, we show that Cep57 is required for pericentriolar material (PCM) organization that regulates centriole engagement. Depletion of Cep57 causes PCM disorganization and precocious centriole disengagement during mitosis. The disengaged daughter centrioles acquire ectopic microtubule-organizing-center activity, which results in chromosome mis-segregation. Similar defects are observed in mosaic variegated aneuploidy syndrome patient cells with
cep57
mutations. We also find that Cep57 binds to the well-conserved PACT domain of pericentrin. Microcephaly osteodysplastic primordial dwarfism disease
pericentrin
mutations impair the Cep57-pericentrin interaction and lead to PCM disorganization. Together, our work demonstrates that Cep57 provides a critical interface between the centriole core and PCM.
Centriole disengagement occurs towards mitotic exit and involves cleavage of pericentrin, a component of the pericentriolar material. Here the authors show that depletion of the centrosomal protein Cep57 leads to precocious centriole disengagement, and that Cep57 binds pericentrin.
Journal Article
9-fold symmetry is not essential for centriole elongation and formation of new centriole-like structures
2024
As daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole’s conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the
Drosophila
male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules.
rcd4
-null mutant spermatocytes display skinny centrioles that elongate normally and localize centriolar components correctly. Mutant spermatocytes also have centrioles of normal girth that splay at their proximal ends when induced to elongate by Ana1 overexpression. Skinny and splayed spermatid centrioles can still recruit a proximal centriole-like (PCL) structure marking a capability to initiate features of centriole duplication in developing sperm. Thus, stable 9-fold symmetry of microtubule triplets is not essential for centriole growth, correct longitudinal association of centriole components, and aspects of centriole duplication.
In this study, the authors show that centriole 9-fold microtubule symmetry is not essential for centriole elongation, correct distribution of the centriole’s components along its length, and in initiating aspects of centriole duplication.
Journal Article
Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole
2014
Primary cilia play critical roles in development and disease. Their assembly is triggered by mature centrioles (basal bodies) and requires centrosomal protein 164kDa (Cep164), a component of distal appendages. Here we show that loss of Cep164 leads to early defects in ciliogenesis, reminiscent of the phenotypic consequences of mutations in TTBK2 (Tau tubulin kinase 2). We identify Cep164 as a likely physiological substrate of TTBK2 and demonstrate that Cep164 and TTBK2 form a complex. We map the interaction domains and demonstrate that complex formation is crucial for the recruitment of TTBK2 to basal bodies. Remarkably, ciliogenesis can be restored in Cep164-depleted cells by expression of chimeric proteins in which TTBK2 is fused to the C-terminal centriole-targeting domain of Cep164. These findings indicate that one of the major functions of Cep164 in ciliogenesis is to recruit active TTBK2 to centrioles. Once positioned, TTBK2 then triggers key events required for ciliogenesis, including removal of CP110 and recruitment of intraflagellar transport proteins. In addition, our data suggest that TTBK2 also acts upstream of Cep164, contributing to the assembly of distal appendages.
Journal Article
The luminal ring protein C2CD3 acts as a radial in-to-out organizer of the distal centriole and appendages
by
Mercey, Olivier
,
Righetto, Ricardo D.
,
Daraspe, Jean
in
Animals
,
Cell Cycle Proteins - metabolism
,
Cell research
2025
Centrioles are polarized microtubule-based structures with appendages at their distal end that are essential for cilia formation and function. The protein C2CD3 is critical for distal appendage assembly, with mutations linked to orofaciodigital syndrome and other ciliopathies. However, its precise molecular role in appendage recruitment remains unclear. Using ultrastructure expansion microscopy (U-ExM) and iterative U-ExM on human cells, together with in situ cryo-electron tomography (cryo-ET) on mouse tissues, we reveal that C2CD3 adopts a radially symmetric 9-fold organization within the centriole’s distal lumen. We show that the C-terminal region of C2CD3 localizes close to a ~100 nm luminal ring structure consisting of ~27 nodes, while its N-terminal region localizes close to a hook-like structure that attaches to the A-microtubule as it extends from the centriole interior to exterior. This hook structure is adjacent to the DISCO complex (MNR/CEP90/OFD1), which marks future appendage sites. C2CD3 depletion disrupts not only the recruitment of the DISCO complex via direct interaction with MNR but also destabilizes the luminal ring network composed of C2CD3/SFI1/centrin-2/CEP135/NA14, as well as the distal microtubule tip protein CEP162. This reveals an intricate “in-to-out” molecular hub connecting the centriolar lumen, distal microtubule cap, and appendages. Although C2CD3 loss results in shorter centrioles and appendage defects, key structural elements remain intact, permitting continued centriole duplication. We propose that C2CD3 forms the luminal ring structure and extends radially to the space between triplet microtubules, functioning as an architectural hub that scaffolds the distal end of the centriole, orchestrating its assembly and directing appendage formation.
Journal Article
Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152
2013
Centrosomes play an important role in various cellular processes, including spindle formation and chromosome segregation. They are composed of two orthogonally arranged centrioles, whose duplication occurs only once per cell cycle. Accurate control of centriole numbers is essential for the maintenance of genomic integrity. Although it is well appreciated that polo-like kinase 4 (Plk4) plays a central role in centriole biogenesis, how it is recruited to centrosomes and whether this step is necessary for centriole biogenesis remain largely elusive. Here we showed that Plk4 localizes to distinct subcentrosomal regions in a temporally and spatially regulated manner, and that Cep192 and Cep152 serve as two distinct scaffolds that recruit Plk4 to centrosomes in a hierarchical order. Interestingly, Cep192 and Cep152 competitively interacted with the cryptic polo box of Plk4 through their homologous N-terminal sequences containing acidic-α-helix and N/Q-rich motifs. Consistent with these observations, the expression of either one of these N-terminal fragments was sufficient to delocalize Plk4 from centrosomes. Furthermore, loss of the Cep192- or Cep152-dependent interaction with Plk4 resulted in impaired centriole duplication that led to delayed cell proliferation. Thus, the spatiotemporal regulation of Plk4 localization by two hierarchical scaffolds, Cep192 and Cep152, is critical for centriole biogenesis.
Journal Article
STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles
by
Rüthnick, Diana
,
Herrmannsdörfer, Frank
,
Kuner, Thomas
in
Amino Acid Motifs
,
Biological Sciences
,
Cell Biology
2018
The centrosome linker proteins C-Nap1, rootletin, and CEP68 connect the two centrosomes of a cell during interphase into one microtubule-organizing center. This coupling is important for cell migration, cilia formation, and timing of mitotic spindle formation. Very little is known about the structure of the centrosome linker. Here, we used stimulated emission depletion (STED) microscopy to show that each C-Nap1 ring at the proximal end of the two centrioles organizes a rootletin ring and, in addition, multiple rootletin/CEP68 fibers. Rootletin/CEP68 fibers originating from the two centrosomes form a web-like, interdigitating network, explaining the flexible nature of the centrosome linker. The rootletin/CEP68 filaments are repetitive and highly ordered. Staggered rootletin molecules (N-to-N and C-to-C) within the filaments are 75 nm apart. Rootletin binds CEP68 via its C-terminal spectrin repeat-containing region in 75-nm intervals. The N-to-C distance of two rootletin molecules is ∼35 to 40 nm, leading to an estimated minimal rootletin length of ∼110 nm. CEP68 is important in forming rootletin filaments that branch off centrioles and to modulate the thickness of rootletin fibers. Thus, the centrosome linker consists of a vast network of repeating rootletin units with C-Nap1 as ring organizer and CEP68 as filament modulator.
Journal Article
Structures of SAS-6 Suggest Its Organization in Centrioles
by
Johnson, Christopher M
,
Ebong, Ima-Obong
,
Yanagisawa, Haru-aki
in
Amino Acid Motifs
,
Animals
,
biogenesis
2011
Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.
Journal Article