Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
90,708 result(s) for "Ceramic materials."
Sort by:
Progress in ceramic materials and structure design toward advanced thermal barrier coatings
Thermal barrier coatings (TBCs) can effectively protect the alloy substrate of hot components in aeroengines or land-based gas turbines by the thermal insulation and corrosion/erosion resistance of the ceramic top coat. However, the continuous pursuit of a higher operating temperature leads to degradation, delamination, and premature failure of the top coat. Both new ceramic materials and new coating structures must be developed to meet the demand for future advanced TBC systems. In this paper, the latest progress of some new ceramic materials is first reviewed. Then, a comprehensive spalling mechanism of the ceramic top coat is summarized to understand the dependence of lifetime on various factors such as oxidation scale growth, ceramic sintering, erosion, and calcium-magnesium-aluminium-silicate (CMAS) molten salt corrosion. Finally, new structural design methods for high-performance TBCs are discussed from the perspectives of lamellar, columnar, and nanostructure inclusions. The latest developments of ceramic top coat will be presented in terms of material selection, structural design, and failure mechanism, and the comprehensive guidance will be provided for the development of next-generation advanced TBCs with higher temperature resistance, better thermal insulation, and longer lifetime.
Tribology of ceramics and composites
This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.
Suspension plasma spray coating of advanced ceramics : thermal barrier applications
\"Suspension Plasma Spray Coating of Advanced Ceramics presents the significance of suspension plasma spray coating of ceramics for thermal barrier applications. It covers suspension formation and optimization in different oxide and non-oxide mixtures and ceramic matrix composites (CMC) of sub-micron and nanosized powders. The book will be useful for professional engineers working in surface modification and researchers studying materials science. This book discusses advanced topics on nanomaterials coatings in monolithic or composite forms as thermal barriers through organic and non-organic based suspensions using high energy plasma spray methods\"-- Provided by publisher.
Advances in ultra-high temperature ceramics, composites, and coatings
Ultra-high temperature ceramics (UHTCs) are generally referred to the carbides, nitrides, and borides of the transition metals, with the Group IVB compounds (Zr & Hf) and TaC as the main focus. The UHTCs are endowed with ultra-high melting points, excellent mechanical properties, and ablation resistance at elevated temperatures. These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles, particularly nozzles, leading edges, and engine components, etc. In addition to bulk UHTCs, UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics. Recently, highentropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials. This review presents the state of the art of processing approaches, microstructure design and properties of UHTCs from bulk materials to composites and coatings, as well as the future directions.
High-temperature mechanical hysteresis in ceramic-matrix composites
\"This book focuses on mechanical hysteresis behavior in different fiber-reinforced ceramic-matrix composites (CMCs), including 1D minicomposites, 1D unidirectional, 2D cross-ply, 2D plain-woven, 2.5D woven, and 3D needle-punched composites. Ceramic-matrix composites (CMCs) are considered to be the lightweight high-temperature materials for hot-section components in aeroengines with the most potential. To improve the reliability and safety of CMC components during operation, it is necessary to conduct damage and failure mechanism analysis, and to develop models to predict this damage as well as fracture over lifetime - mechanical hysteresis is a key damage behavior in fiber-reinforced CMCs. The appearance of hysteresis is due to a composite's internal damage mechanisms and modes, such as, matrix cracking, interface debonding, and fiber failure. Micromechanical damage models and constitutive models are developed to predict mechanical hysteresis in different CMCs. Effects of a composite's constituent properties, stress level, and the damage states of the mechanical hysteresis behavior of CMCs are also discussed. This book also covers damage mechanisms, damage models and micromechanical constitutive models for the mechanical hysteresis of CMCs. This book will be a great resource for students, scholars, material scientists and engineering designers who would like to understand and master the mechanical hysteresis behavior of fiber-reinforced CMCs\"-- Provided by publisher.
Additive Manufacturing of Advanced Ceramics Using Preceramic Polymers
Ceramic materials are used in various industrial applications, as they possess exceptional physical, chemical, thermal, mechanical, electrical, magnetic, and optical properties. Ceramic structural components, especially those with highly complex structures and shapes, are difficult to fabricate with conventional methods, such as sintering and hot isostatic pressing (HIP). The use of preceramic polymers has many advantages, such as excellent processibility, easy shape change, and tailorable composition for fabricating high-performance ceramic components. Additive manufacturing (AM) is an evolving manufacturing technique that can be used to construct complex and intricate structural components. Integrating polymer-derived ceramics and AM techniques has drawn significant attention, as it overcomes the limitations and challenges of conventional fabrication approaches. This review discusses the current research that used AM technologies to fabricate ceramic articles from preceramic feedstock materials, and it demonstrates that AM processes are effective and versatile approaches for fabricating ceramic components. The future of producing ceramics using preceramic feedstock materials for AM processes is also discussed at the end.
New directions in ceramics : from spectacle to trace
\"New Directions in Ceramics is a comprehensive overview of the contemporary ceramic scene, looking at new and innovative areas and the makers who have been leading the way. Over the last 15 years there have been significant developments in the interests and approaches of some leading ceramicists, who are exploring new and exciting avenues of activity. Contemporary ceramics includes a dynamic range of approaches for sculptural-orientated work, covering ceramics as performance, site-specific installation work, time-based ceramics, re-presentations of the human body and the environment. Chapters provide an introduction to each area under discussion and show how they have evolved, followed by a closer examination of work by selected ceramicists working, with illustrations of relevant examples and a discussion of how they fit into the current scene. Including a series of interviews with the artists, that draw out fresh and topical discussions and insights, offering new material not available elsewhere. New Directions in Ceramics offers an exciting look at the contemporary ceramic scene, which innovative approaches have been adopted, and which are developing\"-- Provided by publisher.
Progress and challenges towards additive manufacturing of SiC ceramic
Silicon carbide (SiC) ceramic and related materials are widely used in various military and engineering fields. The emergence of additive manufacturing (AM) technologies provides a new approach for the fabrication of SiC ceramic products. This article systematically reviews the additive manufacturing technologies of SiC ceramic developed in recent years, including Indirect Additive Manufacturing (Indirect AM) and Direct Additive Manufacturing (Direct AM) technologies. This review also summarizes the key scientific and technological challenges for the additive manufacturing of SiC ceramic, and also forecasts its possible future opportunities. This paper aims to provide a helpful guidance for the additive manufacturing of SiC ceramic and other structural ceramics.