Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
563
result(s) for
"Cerebrum - pathology"
Sort by:
Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment
by
Tan, Kelly R.
,
Kojima, Ryosuke
,
Ausländer, Simon
in
13/44
,
3' Untranslated Regions
,
631/553/552
2018
Exosomes are cell-derived nanovesicles (50–150 nm), which mediate intercellular communication, and are candidate therapeutic agents. However, inefficiency of exosomal message transfer, such as mRNA, and lack of methods to create designer exosomes have hampered their development into therapeutic interventions. Here, we report a set of EXOsomal transfer into cells (EXOtic) devices that enable efficient, customizable production of designer exosomes in engineered mammalian cells. These genetically encoded devices in exosome producer cells enhance exosome production, specific mRNA packaging, and delivery of the mRNA into the cytosol of target cells, enabling efficient cell-to-cell communication without the need to concentrate exosomes. Further, engineered producer cells implanted in living mice could consistently deliver cargo mRNA to the brain. Therapeutic catalase mRNA delivery by designer exosomes attenuated neurotoxicity and neuroinflammation in in vitro and in vivo models of Parkinson’s disease, indicating the potential usefulness of the EXOtic devices for RNA delivery-based therapeutic applications.
Exosomes function as intercellular information transmitters and are candidates for delivery of therapeutic agents. Here the authors present EXOtic, a synthetic biology device for in-situ production of designer exosomes and demonstrate in vivo application in models of Parkinson's disease.
Journal Article
Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits
2019
Bloodborne infections with
Candida albicans
are an increasingly recognized complication of modern medicine. Here, we present a mouse model of low-grade candidemia to determine the effect of disseminated infection on cerebral function and relevant immune determinants. We show that intravenous injection of 25,000
C. albicans
cells causes a highly localized cerebritis marked by the accumulation of activated microglial and astroglial cells around yeast aggregates, forming fungal-induced glial granulomas. Amyloid precursor protein accumulates within the periphery of these granulomas, while cleaved amyloid beta (Aβ) peptides accumulate around the yeast cells. CNS-localized
C. albicans
further activate the transcription factor NF-κB and induce production of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor (TNF), and Aβ peptides enhance both phagocytic and antifungal activity from BV-2 cells. Mice infected with
C. albicans
display mild memory impairment that resolves with fungal clearance. Our results warrant additional studies to understand the effect of chronic cerebritis on cognitive and immune function.
The potential links between infections and neurodegenerative disorders are unclear. Here, Wu et al. present a mouse model of low-grade candidemia characterized by highly localized cerebritis, accumulation of amyloid precursor protein and beta peptides, and mild memory impairment that resolves with fungal clearance.
Journal Article
Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma
2016
Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M—including H3.2K27M—mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (
TP53/PPM1D
) or specific growth factor pathways (
ACVR1/PIK3R1
). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.
Diffuse Intrinsic Pontine Gliomas are diagnosed by sampling a small portion of the tumour. Here, using multiple samples from tumours, the authors analyse the spatial and temporal distribution of driver mutations revealing that H3K27M mutations arise first in tumorigenesis followed by a specific invariable sequence of driver mutations, which are homogeneously distributed across the tumour mass.
Journal Article
Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia
2019
Malformations of the human cortex represent a major cause of disability1. Mouse models with mutations in known causal genes only partially recapitulate the phenotypes and are therefore not unlimitedly suited for understanding the molecular and cellular mechanisms responsible for these conditions2. Here we study periventricular heterotopia (PH) by analyzing cerebral organoids derived from induced pluripotent stem cells (iPSCs) of patients with mutations in the cadherin receptor–ligand pair DCHS1 and FAT4 or from isogenic knockout (KO) lines1,3. Our results show that human cerebral organoids reproduce the cortical heterotopia associated with PH. Mutations in DCHS1 and FAT4 or knockdown of their expression causes changes in the morphology of neural progenitor cells and result in defective neuronal migration dynamics only in a subset of neurons. Single-cell RNA-sequencing (scRNA-seq) data reveal a subpopulation of mutant neurons with dysregulated genes involved in axon guidance, neuronal migration and patterning. We suggest that defective neural progenitor cell (NPC) morphology and an altered navigation system in a subset of neurons underlie this form of PH.iPSC-derived brain organoids from patients with neurodevelopmental disease reveal dysfunction in neural progenitors underlying impaired migration of developing neurons in periventricular heterotopia.
Journal Article
Damage of the right dorsal superior longitudinal fascicle by awake surgery for glioma causes persistent visuospatial dysfunction
by
Yahata, Tetsutaro
,
Genda, Ryoji
,
Kinoshita, Masashi
in
692/4028/67/1922
,
692/617/375/1922
,
692/698/1688/64
2017
Patients with glioma frequently present with neuropsychological deficits preoperatively and/or postoperatively, and these deficits may remain after the chronic phase. However, little is known about postoperative recovery course of right hemispheric function. We therefore studied the characteristics and causes of persistent cognitive dysfunction in right cerebral hemispheric glioma. Eighteen patients who underwent awake surgery participated in this study. All patients who received preoperative neuropsychological examinations were assigned to two groups according to their test results: preoperative deficit and normal. They were reassessed 1 week and 3 months after surgery. The rates of remaining deficits in the deficit group at chronic phase were higher than those of the normal group for all functions. Despite preoperative normal function, the remaining rate for visuospatial cognitive deficits was the highest among all functions. The voxel-based lesion-symptom mapping analysis for visuospatial cognition revealed that a part of the medial superior and middle frontal gyri were resected with high probability in patients with low visuospatial cognitive accuracy. Our study indicates that in patients with preoperative neuropsychological deficits, these deficits tend to remain until the chronic phase. Visuospatial dysfunction frequently persists until the chronic phase, which might reflect damage to the superior longitudinal fasciclus I and II.
Journal Article
Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain
by
Schiff, Nicholas D.
,
Fridman, Esteban A.
,
Beattie, Bradley J.
in
Anatomy
,
Basal ganglia
,
Biological Sciences
2014
Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [ ¹⁸F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following.
Journal Article
Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status
by
Holt, Robert A.
,
Power, Christopher
,
Branton, William G.
in
Acquired immune deficiency syndrome
,
Acquired Immunodeficiency Syndrome - complications
,
Acquired Immunodeficiency Syndrome - genetics
2013
The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1⁻/⁻ mouse brains. Intracerebral implantation of human brain homogenates into RAG1⁻/⁻ mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain's microbiome regardless of underlying immune status, which could be transferred into naïve hosts leading to microbial persistence in the brain.
Journal Article
Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies
by
Niizato, Kazhuhiro
,
Akiyama, Haruhiko
,
Mackenzie, Ian R. A.
in
Aged
,
Aged, 80 and over
,
Alzheimer Disease - metabolism
2009
Phosphorylated and proteolytically cleaved TDP-43 is a major component of the ubiquitin-positive inclusions in the most common pathological subtype of frontotemporal lobar degeneration (FTLD-U). Intracellular accumulation of TDP-43 is observed in a subpopulation of patients with other dementia disorders, including Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB). However, the pathological significance of TDP-43 pathology in these disorders is unknown, since biochemical features of the TDP-43 accumulated in AD and DLB brains, especially its phosphorylation sites and pattern of fragmentation, are still unclear. To address these issues, we performed immunohistochemical and biochemical analyses of AD and DLB cases, using phosphorylation-dependent anti-TDP-43 antibodies. We found a higher frequency of pathological TDP-43 in AD (36–56%) and in DLB (53–60%) than previously reported. Of the TDP-43-positive cases, about 20–30% showed neocortical TDP-43 pathology resembling the FTLD-U subtype associated with progranulin gene (
PGRN
) mutations. Immunoblot analyses of the sarkosyl-insoluble fraction from cases with neocortical TDP-43 pathology showed intense staining of several low-molecular-weight bands, corresponding to C-terminal fragments of TDP-43. Interestingly, the band pattern of these C-terminal fragments in AD and DLB also corresponds to that previously observed in the FTLD-U subtype associated with
PGRN
mutations. These results suggest that the morphological and biochemical features of TDP-43 pathology are common between AD or DLB and a specific subtype of FTLD-U. There may be genetic factors, such as mutations or genetic variants of
PGRN
underlying the co-occurrence of abnormal deposition of TDP-43, tau and
α
-synuclein.
Journal Article
Very low levels of ABCA7 in the cerebrum and Alzheimer’s disease onset between the ages of 60 and 80 independently of APOE
by
Wiener, Joel P
,
Lyssenko, Nicholas N
,
Garliyev, Viktor
in
Adenosine triphosphate
,
Age of Onset
,
Aged
2024
This cross-sectional study addressed the ABCA7-Alzheimer’s disease (AD) association. ABCA7 protein levels were quantified in 3 cerebral regions of brain donors with Braak neurofibrillary tangle (NFT) stages 0-V. Ordinal regression models were implemented to estimate the effect of ABCA7 on stopping in an earlier Braak NFT stage versus progressing to the later stages in 2 prespecified age segments. In the final model, high ABCA7 levels in the parietal cortex increased the odds of remaining cognitively healthy (ie, in stages 0/I) versus experiencing AD onset (ie, progressing to stages II-V) in the 61-80 age segment (OR = 2.87, adj 95% CI = 1.41-7.86, adj P = .007, n = 109), after controlling for APOE and other covariates. No ABCA7-AD association was found in the 81-98 age segment (n = 113). Parietal ABCA7 levels in 61-80-year-old with stages II-V were very low, even significantly lower than in 81-98-year-old with stages II-V. ABCA7 levels in the prefrontal cortex and hippocampus predicted AD onset in the 61-80 age segment after adjustment for APOE. ABCA7 levels were also the lowest in 61-80-year-old with frequent neuritic plaques. Thus, very low ABCA7 levels in the cerebrum are associated with AD onset in the 7th-8th decade of life.
Journal Article
Astrocytic P2Y(1) receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia
by
Tsuda, Makoto
,
Inoue, Kazuhide
,
Kuboyama, Kazuya
in
Animals
,
Astrocytes - immunology
,
Astrocytes - metabolism
2011
After brain ischemia, significant amounts of adenosine 5'-triphosphate are released or leaked from damaged cells, thus activating purinergic receptors in the central nervous system. A number of P2X/P2Y receptors have been implicated in ischemic conditions, but to date the P2Y(1) receptor (P2Y(1)R) has not been implicated in cerebral ischemia. In this study, we found that the astrocytic P2Y(1)R, via phosphorylated-RelA (p-RelA), has a negative effect during cerebral ischemia/reperfusion. Intracerebroventricular administration of the P2Y(1)R agonist, MRS 2365, led to an increase in cerebral infarct volume 72 hours after transient middle cerebral artery occlusion (tMCAO). Administration of the P2Y(1)R antagonist, MRS 2179, significantly decreased infarct volume and led to recovered motor coordination. The effects of MRS 2179 occurred within 24 hours of tMCAO, and also markedly reduced the expression of p-RelA and interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1/chemokine (C-C motif) ligand 2 (CCL2), and interferon-inducible protein-10/chemokine (C-X-C motif) ligand 10 (CXCL10) mRNA. P2Y(1)R and p-RelA were colocalized in glial fibrillary acidic protein-positive astrocytes, and an increase in infarct volume after MRS 2365 treatment was inhibited by the nuclear factor (NF)-κB inhibitor ammonium pyrrolidine dithiocarbamate. These results provide evidence that the P2Y(1)R expressed in cortical astrocytes may help regulate the cytokine/chemokine response after tMCAO/reperfusion through a p-RelA-mediated NF-κB pathway.
Journal Article