Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,700
result(s) for
"Chemical mutagenesis"
Sort by:
Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis
2017
Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.
Journal Article
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes
2016
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Journal Article
Determination of absorption dose in chemical mutagenesis in plants
by
Zheng, Yan
,
Wei, Zhinan
,
Deng, Yun
in
Absorption
,
Absorption, Physiological
,
Biological effects
2019
Chemical mutagenesis is a useful tool for inducing mutations in plants. Seeds are often used as the material for chemical mutagenesis. The biological effect of a chemical mutagen on seeds is determined by absorption dose (the product of mutagen concentration and acting time, which starts after the mutagen is absorbed by the seeds). In practice, however, the concept of exposure dose (the product of mutagen concentration and treating time) is usually used instead because the time for absorbing mutagen is unknown. In this study, we conducted an experiment using ethyl methane sulphonate (EMS) to treat cauliflower seeds, in which five EMS concentrations (0%, 0.5%, 1.0%, 1.5% and 2.0%), three treating time lengths (4 h, 6 h and 8 h) and two pretreatments (non-presoaking and presoaking of seeds for 2 h) were set. We obtained a well-fitted nonlinear regression model for the relationship between seedling survival rate and the EMS treatment, and its marginal models for the two pretreatments. Based on the models, we determined the EMS absorption doses under the two different pretreatments and identified their 50% lethality dose (LD50). We found that presoaking could delay EMS absorption and therefore reduce the injury caused by EMS within a given treating time, but could hardly change the biological effect of EMS after it is absorbed. The conclusions about absorption dose and presoaking effect obtained in this study might be generally applicable to plant chemical mutagenesis in principle.
Journal Article