Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
23,712 result(s) for "Chemical substance"
Sort by:
A Study on the Measurement of Unregulated Pollutants in Korean Residential Environments
This study investigated the pollution caused by unregulated chemical substances in Korean residential environments. A TA tube was used for indoor air collection, and Gas Chromatography–Mass Spectrometry was used for the analysis of chemical substances. According to the results of this study, 13 substances out of the 16 analyzed chemicals were detected and, among them, the concentrations of phenol, α-pinene, and limonene within the indoor air were high. The average concentration of phenol was 32.7 µg/m3. α-pinene and limonene were detected, of which the highest concentrations were as 598.2 µg/m3 and 652.5 µg/m3, respectively. The maximum concentrations of these three substances exceeded the levels of the lowest concentration of interest. Notably, α-pinene and limonene were released from the wood itself. Wood has been widely used indoors as a natural building material and as furniture. Therefore, it was considered that this was the reason for the high the concentrations of the two substances in indoor air. However, we do not argue that the usage of wood should be reduced because of the results obtained in this study. Instead, we sµggest that it is important to reduce the emissions of α-pinene and limonene throµgh the processing of the wood, extending its drying period, and determining the most appropriate time of use.
Identification and assessment of water safety risk for groundwater recharge with reclaimed water in China
Groundwater recharge using reclaimed water has developed rapidly around the world to relieve the groundwater resource shortage and declining of the water table. Traditional water treatment systems are inefficient to remove all the types of contaminants, so it is urgent to identify the priority chemical substances (CSs) that deserve our first concern. In this study, we developed a method (EER method) to identify priority CSs in groundwater recharge by surface spreading and direct aquifer injection. Three stages were processed which were exposure assessment, effect assessment and ranking for identification of priority CSs. Fourteen cities in China were selected for data collected and 90 pollutants in reclaimed water samples were analyzed as the target pollutants for a case study. According to three stages, the 90 CSs studied were divided into five groups (primary control CSs and high, moderate and low and no risk control CSs). In the primary control CSs and high, moderate and low and no risk control CSs group there were 14, 18, 21, 21 and 16 CSs, respectively when groundwater recharged by surface spreading, while there were 15, 18, 21, 21 and 15 CSs when recharged by direct injection. This method provided an indicator of prioritizing the risk of 90 compounds in the reclaimed water for groundwater recharge.
Dynamic covalent self-assembly of mechanically interlocked molecules solely made from peptides
Mechanically interlocked molecules (MIMs), such as rotaxanes and catenanes, have captured the attention of chemists both from a synthetic perspective and because of their role as simple prototypes of molecular machines. Although examples exist in nature, most synthetic MIMs are made from artificial building blocks and assembled in organic solvents. The synthesis of MIMs from natural biomolecules remains highly challenging. Here, we report on a synthesis strategy for interlocked molecules solely made from peptides, that is, mechanically interlocked peptides (MIPs). Fully peptidic, cysteine-decorated building blocks were self-assembled in water to generate disulfide-bonded dynamic combinatorial libraries consisting of multiple different rotaxanes, catenanes and daisy chains as well as more exotic structures. Detailed NMR spectroscopy and mass spectrometry characterization of a [2]catenane comprising two peptide macrocycles revealed that this structure has rich conformational dynamics reminiscent of protein folding. Thus, MIPs can serve as a bridge between fully synthetic MIMs and those found in nature.The construction of mechanically interlocked molecules solely made from peptides is a great synthetic challenge because of a lack of effective templating strategies. Now it has been shown that by combining self-assembly and dynamic covalent chemistry, catenanes, daisy chains and other interlocked peptides can be synthesized from genetically engineered building blocks.
Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state
In the chromatographic separation of enantiomers the order of elution is determined by the strength of diasteromeric interactions between the components of the mixture and a chiral stationary phase. For analytical purposes, it is ideal to have the minor component elute first, whereas in the preparative mode a faster elution of the major component is desirable. Here we describe a stationary phase constructed from a polyacetylene that bears 2,2′-bisphenol-derived side chains in which chirality can be switched in the solid state prior to use. Both the macromolecular helicity of the polymer backbone and the axial chirality of the side chains can be switched in the solid state by interaction with a chiral alcohol, but importantly are maintained after removal of the chiral alcohol because of a memory effect. The chiral stationary phase thus prepared was used to separate the enantiomers of trans -stilbene oxide with the enantiomer elution order determined by the preseparation treatment. Reversible chirality switching and memory is demonstrated in a helical polyacetylene. Both the helicity of the polymer backbone and the axial chirality of the side chains contribute to the memory effect. When used to produce a chiral stationary phase for a chromatographic enantiomer resolution it was possible to switch the elution order under identical chromatographic conditions.
Rational design of self-assembly pathways for complex multicomponent structures
The field of complex self-assembly is moving toward the design of multiparticle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such “addressable complexity,” we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in nonclassical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate 3D structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity.
A synthetic molecular pentafoil knot
Knots are being discovered with increasing frequency in both biological and synthetic macromolecules and have been fundamental topological targets for chemical synthesis for the past two decades. Here, we report on the synthesis of the most complex non-DNA molecular knot prepared to date: the self-assembly of five bis-aldehyde and five bis-amine building blocks about five metal cations and one chloride anion to form a 160-atom-loop molecular pentafoil knot (five crossing points). The structure and topology of the knot is established by NMR spectroscopy, mass spectrometry and X-ray crystallography, revealing a symmetrical closed-loop double helicate with the chloride anion held at the centre of the pentafoil knot by ten CH···Cl – hydrogen bonds. The one-pot self-assembly reaction features an exceptional number of different design elements—some well precedented and others less well known within the context of directing the formation of (supra)molecular species. We anticipate that the strategies and tactics used here can be applied to the rational synthesis of other higher-order interlocked molecular architectures. The most complex non-DNA molecular knot prepared so far is self-assembled around a chloride anion from five metal cations, five bis-aldehyde and five bis-amine building blocks, in a one-pot reaction. The X-ray crystal structure of the 160-atom-loop pentafoil knot reveals a symmetrical closed-loop double helicate with a chloride anion held at its centre by ten CH···Cl − hydrogen bonds.
Advancing Aquatic Food Safety Detection Using Highly Sensitive Graphene Oxide and Reduced Graphene Oxide (GO/r-GO) Fluorescent Sensors
With the increasing demand for aquatic products, the requirement for the safety detection of aquatic products is also increasing. In the past decade, graphene oxide (GO) and reduced graphene oxide (r-GO) have become hot topics in many fields due to their special physical and chemical properties. With their excellent conductivity, a variety of electrochemical sensors have been developed in the fields of biology, food and chemistry. However, the unique optical properties of GO/r-GO have not yet been widely utilized. With the deepening of research, the fluorescence quenching performance of GO/r-GO has been proven to have excellent potential for building fluorescent sensors, and GO/r-GO fluorescent sensors have thus become an inevitable trend in sensor development. This review summarizes the main preparation methods of GO/r-GO and the principles of GO/r-GO fluorescent sensors comprehensively. Additionally, recent advances in utilizing GO/r-GO fluorescent sensors to detect aquatic food are discussed, including the application for the detection of harmful chemicals, microorganisms, and endogenous substances in aquatic products, such as pesticides, antibiotics and heavy metals. It is hoped that this review will help accelerate the progress in the field of analysis, and promote the establishment of an aquatic food supervision system.
Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions
To provide insight into how cells receive information from their external surroundings, synthetic hydrogels have emerged as systems for assaying cell function in well-defined microenvironments where single cues can be introduced and subsequent effects individually elucidated. However, as answers to more complex biological questions continue to be sought, advanced material systems are needed that allow dynamic alteration of the three-dimensional cellular environment with orthogonal reactions that enable multiple levels of control of biochemical and biomechanical signals. Here, we seek to synthesize one such three-dimensional culture system using cytocompatible and wavelength-specific photochemical reactions to create hydrogels that allow orthogonal and dynamic control of material properties through independent spatiotemporally regulated photocleavage of crosslinks and photoconjugation of pendant functionalities. The results demonstrate the versatile nature of the chemistry to create programmable niches to study and direct cell function by modifying the local hydrogel environment. Cell-laden synthetic hydrogels — formed via a copper-free click reaction between a poly(ethylene glycol) tetra-cyclooctyne and a peptide-diazide — provide a platform to investigate the cells' response to various stimuli during growth. The hydrogel's biochemical aspects are readily controlled by a thiol-ene photocoupling reaction initiated with visible light, whereas the biomechanical properties of the network are altered via a UV-mediated photodegradation.
QCL Active Area Modeling with a View to Being Applied to Chemical Substance Detection Systems
Numerical research into the QCL tunability aspects in respect to being applied in chemical substance detection systems is covered in this paper. The QCL tuning opportunities by varying power supply conditions and geometric dimensions of the active area have been considered. Two models for superlattice finite (FSML) and infinite (RSM) size were assumed for simulations. The results obtained have been correlated with the absorption map for selected chemical substances in order to identify the potential detection possibilities.
Trends in corporate environmental management studies and databases
To explain why and how corporate environmental management is beneficial, it is important to provide incentives to private companies to encourage such environmental activities. This study proposes a new corporate financial and environmental dataset called the world resource table (WRT), which uses open data sources published by the Japanese government. Environmental data include Greenhouse gas emissions and toxic chemical release data. With more than 1000 annual samples, the WRT will allow empirical analyses that use productivity measures and econometric approaches. WRT will also include corporate patent data, with linkages to analytical software packages such as GAMS and R.