Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
391,461 result(s) for "Chemistry, Organic."
Sort by:
Introduction to the organic nomenclature system
According to the International Union of Pure & Applied Chemistry (IUPAC), the organic chemistry nomenclature is a technique for naming organic chemical compounds in chemical nomenclature. It is presented in the Organic Chemistry Nomenclature (OCN). Guidelines for systematic nomenclature of organic compounds developed by the International Union of Pure & Applied Chemistry and frequently updated. The stem name, prefix, and suffix are the three main components of the IUPAC nomenclature for organic compounds. It is highlighted in this volume that the use of alternative names to draw attention to structural characteristics shared by a number of compounds, or to take into account a particular context does not preclude the use of preferred IUPAC names. The \"preferred IUPAC nomenclature\" includes the names that are chosen by the institution. In the context of \"general IUPAC nomenclature, \" any name other than a preferred IUPAC name is acceptable as a standard IUPAC name as long as it is unambiguous and adheres to the principles of the IUPAC recommendations herein.
Computational planning of the synthesis of complex natural products
Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years 1 – 7 . However, the field has progressed greatly since the development of early programs such as LHASA 1 , 7 , for which reaction choices at each step were made by human operators. Multiple software platforms 6 , 8 – 14 are now capable of completely autonomous planning. But these programs ‘think’ only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary 15 , 16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program’s knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships 17 , 18 , allowing it to ‘strategize’ over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization. A synthetic route-planning algorithm, augmented with causal relationships that allow it to strategize over multiple steps, can design complex natural-product syntheses that are indistinguishable from those designed by human experts.
Organic chemistry I for dummies
\"Clear explanations of organic chemistry principles; logical approaches to solving organic chemistry problems; tips to help you ace your Organic Chemistry I course\"--Cover.
Superelectrophiles and their chemistry
Superelectrophiles and Their Chemistry contains, for the first-time, a discussion of the basics of this emerging field of organic chemistry, alongside tools to help the reader apply the chemistry. Specific tools include an evaluation of the ways to increase the strength of electrophiles, the classification of superelectrophiles, the solvation issues, a review of methods for studying superelectrophilicity, with details of the superelectrophiles that have been identified and studied. Additional information includes substituent effects in activation of superelectrophiles, and solvation in chemical reactions, as well as an insightful look into future applications.
Design strategies for organic semiconductors beyond the molecular formula
Although the molecular formula gives valuable information on the properties of isolated molecules or conjugated polymers, it fails to accurately predict their collective behaviour in the solid state. This Perspective highlights the importance of organization across multiple length scales on the optical and electronic properties of organic semiconductors, and how device performances poorly reflect the capabilities of a given material. Organic semiconducting materials based on polymers and molecular systems containing an electronically delocalized structure are the basis of emerging optoelectronic technologies such as plastic solar cells and flexible transistors. For isolated molecules, guidelines exist that rely on the molecular formula to tailor the frontier (highest occupied or lowest unoccupied) molecular orbital energy levels and optical absorption profiles. Much less control can be achieved over relevant properties, however, as one makes the transition to the ensemble behaviour characteristic of the solid state. Polymeric materials are also challenging owing to the statistical description of the average number of repeat units. Here we draw attention to the limitations of molecular formulae as predictive tools for achieving properties relevant to device performances. Illustrative examples highlight the relevance of organization across multiple length scales, and how device performances — although relevant for practical applications — poorly reflect the success of molecular design.
Methods and applications of cycloaddition reactions in organic syntheses
Advanced tools for developing new functional materials and applications in chemical research, pharmaceuticals, and materials science Cycloadditions are among the most useful tools for organic chemists, enabling them to build carbocyclic and heterocyclic structures. These structures can then be used to develop a broad range of functional materials, including pharmaceuticals, agrochemicals, dyes, and optics. With contributions from an international team of leading experts and pioneers in cycloaddition chemistry, this book brings together and reviews recent advances, trends, and emerging research in the field. Methods and Applications of Cycloaddition Reactions in Organic Syntheses focuses on two component cycloadditions, with chapters covering such topics as: * N1 unit transfer reaction to C–C double bonds * [3+2] Cycloaddition of ?, ?-unsaturated metal-carbene complexes * Formal [3+3] cycloaddition approach to natural product synthesis * Development of new methods for the construction of heterocycles based on cycloaddition reaction of 1,3-dipoles * Cycloreversion approach for preparation of large ?-conjugated compounds * Transition metal-catalyzed or mediated [5+1] cycloadditions Readers will learn methods for seamlessly executing important reactions such as Diels-Alder and stereoselective dipolar reactions in order to fabricate heterocyclic compounds, natural products, and functional molecules. The book not only features cutting-edge topics, but also important background information, such as the contributors' process for developing new methodologies, to help novices become fully adept in the field. References at the end of each chapter lead to original research papers and reviews for facilitating further investigation of individual topics. Covering the state of the science and technology, Methods and Applications of Cycloaddition Reactions in Organic Syntheses enables synthetic organic chemists to advance their research and develop new functional materials and applications in chemical research, pharmaceuticals, and materials science.