Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,321 result(s) for "Chitin - metabolism"
Sort by:
Structural basis for directional chitin biosynthesis
Chitin, the most abundant aminopolysaccharide in nature, is an extracellular polymer consisting of N -acetylglucosamine (GlcNAc) units 1 . The key reactions of chitin biosynthesis are catalysed by chitin synthase 2 – 4 , a membrane-integrated glycosyltransferase that transfers GlcNAc from UDP-GlcNAc to a growing chitin chain. However, the precise mechanism of this process has yet to be elucidated. Here we report five cryo-electron microscopy structures of a chitin synthase from the devastating soybean root rot pathogenic oomycete Phytophthora sojae ( Ps Chs1). They represent the apo, GlcNAc-bound, nascent chitin oligomer-bound, UDP-bound (post-synthesis) and chitin synthase inhibitor nikkomycin Z-bound states of the enzyme, providing detailed views into the multiple steps of chitin biosynthesis and its competitive inhibition. The structures reveal the chitin synthesis reaction chamber that has the substrate-binding site, the catalytic centre and the entrance to the polymer-translocating channel that allows the product polymer to be discharged. This arrangement reflects consecutive key events in chitin biosynthesis from UDP-GlcNAc binding and polymer elongation to the release of the product. We identified a swinging loop within the chitin-translocating channel, which acts as a ‘gate lock’ that prevents the substrate from leaving while directing the product polymer into the translocating channel for discharge to the extracellular side of the cell membrane. This work reveals the directional multistep mechanism of chitin biosynthesis and provides a structural basis for inhibition of chitin synthesis. Using cryo-electron microscopy, the directional multiple step mechanism of chitin biosynthesis is revealed.
Structure, catalysis, chitin transport, and selective inhibition of chitin synthase
Chitin is one of the most abundant natural biopolymers and serves as a critical structural component of extracellular matrices, including fungal cell walls and insect exoskeletons. As a linear polymer of β-(1,4)-linked N-acetylglucosamine, chitin is synthesized by chitin synthases, which are recognized as targets for antifungal and anti-insect drugs. In this study, we determine seven different cryo-electron microscopy structures of a Saccharomyces cerevisiae chitin synthase in the absence and presence of glycosyl donor, acceptor, product, or peptidyl nucleoside inhibitors. Combined with functional analyses, these structures show how the donor and acceptor substrates bind in the active site, how substrate hydrolysis drives self-priming, how a chitin-conducting transmembrane channel opens, and how peptidyl nucleoside inhibitors inhibit chitin synthase. Our work provides a structural basis for understanding the function and inhibition of chitin synthase. Chitin, the second most abundant natural polysaccharide in nature, is synthesized by chitin synthases, which are recognized as targets for antifungal and anti-insect drugs. Here the authors determine cryo-EM structures of the chitin synthase, which reveal its activation, catalytic and inhibitory mechanisms
Molecular architecture of chitin and chitosan-dominated cell walls in zygomycetous fungal pathogens by solid-state NMR
Zygomycetous fungal infections pose an emerging medical threat among individuals with compromised immunity and metabolic abnormalities. Our pathophysiological understanding of these infections, particularly the role of fungal cell walls in growth and immune response, remains limited. Here we conducted multidimensional solid-state NMR analysis to examine cell walls in five Mucorales species, including key mucormycosis causative agents like Rhizopus and Mucor species. We show that the rigid core of the cell wall primarily comprises highly polymorphic chitin and chitosan, with minimal quantities of β-glucans linked to a specific chitin subtype. Chitosan emerges as a pivotal molecule preserving hydration and dynamics. Some proteins are entrapped within this semi-crystalline chitin/chitosan layer, stabilized by the sidechains of hydrophobic amino acid residues, and situated distantly from β-glucans. The mobile domain contains galactan- and mannan-based polysaccharides, along with polymeric α-fucoses. Treatment with the chitin synthase inhibitor nikkomycin removes the β-glucan-chitin/chitosan complex, leaving the other chitin and chitosan allomorphs untouched while simultaneously thickening and rigidifying the cell wall. These findings shed light on the organization of Mucorales cell walls and emphasize the necessity for a deeper understanding of the diverse families of chitin synthases and deacetylases as potential targets for novel antifungal therapies. Pathogenic Mucorales fungi are common in immunocompromised. Here, Cheng et al. determine the molecular architecture of their chitin/chitosan-rich cell walls and the restructuring that occurs in response to the chitin inhibitor nikkomycin.
Structural basis for inhibition and regulation of a chitin synthase from Candida albicans
Chitin is an essential component of the fungal cell wall. Chitin synthases (Chss) catalyze chitin formation and translocation across the membrane and are targets of antifungal agents, including nikkomycin Z and polyoxin D. Lack of structural insights into the action of these inhibitors on Chs has hampered their further development to the clinic. We present the cryo-EM structures of Chs2 from Candida albicans ( Ca Chs2) in the apo, substrate-bound, nikkomycin Z-bound, and polyoxin D-bound states. Ca Chs2 adopts a unique domain-swapped dimer configuration where a conserved motif in the domain-swapped region controls enzyme activity. Ca Chs2 has a dual regulation mechanism where the chitin translocation tunnel is closed by the extracellular gate and plugged by a lipid molecule in the apo state to prevent non-specific leak. Analyses of substrate and inhibitor binding provide insights into the chemical logic of Chs inhibition, which can guide Chs-targeted antifungal development. Atomic-resolution structures of an important antifungal target, chitin synthase 2, from a pathogenic fungus, Candida albicans , reveal a unique domain-swapped dimeric assembly and provide insights into the mechanism of antifungal action.
Distinct cellular and molecular mechanisms contribute to the specificity of the two Drosophila melanogaster chitin synthases in chitin deposition
Chitin is a major component of arthropod extracellular matrices, including the exoskeleton and the midgut peritrophic matrix. It plays a key role in the development, growth and viability of insects. Beyond the biological importance of this aminopolysaccharide, chitin also receives considerable attention for its practical applications in medicine and biotechnology, as it is a superior biopolymer with excellent physicochemical and mechanical properties. Chitin is synthesised and deposited extracellularly by chitin synthases. Most insects encode two types of chitin synthases: type A, which are presumed to be required for exoskeleton formation, and type B, which are thought to produce the peritrophic matrix. However, the factors that contribute to the specificity of each type of chitin synthase remain unclear. Here, we leverage the advantages of Drosophila melanogaster for functional manipulations to evaluate the mechanisms of activity and the functional requirements of Kkv (Chitin synthase A) and Chs2 (Chitin synthase B). We first demonstrate that Chs2 is expressed and required in a specific region of the larval proventriculus responsible for producing chitin in the peritrophic matrix. We then assess whether the two chitin synthases can functionally substitute for each other. Additionally, we examine their subcellular localisation in different tissues and their ability to deposit chitin in combination with known auxiliary proteins. Our results indicate that these two different chitin synthases are not functionally interchangeable and that they use distinct cellular and molecular mechanisms to deposit chitin. We suggest that the specificity of insect chitin synthases may underlie the production of chitin polymers with different properties, conferring different physiological activities to the extracellular matrices.
Chitin Translocation Is Functionally Coupled with Synthesis in Chitin Synthase
Chitin, an extracellular polysaccharide, is synthesized by membrane-embedded chitin synthase (CHS) utilizing intracellular substrates. The mechanism of the translocation of synthesized chitin across the membrane to extracellular locations remains unresolved. We prove that the chitin synthase from Phytophthora sojae (PsCHS) is a processive glycosyltransferase, which can rapidly produce and tightly bind with the highly polymerized chitin. We further demonstrate that PsCHS is a bifunctional enzyme, which is necessary and sufficient to translocate the synthesized chitin. PsCHS was purified and then reconstituted into proteoliposomes (PLs). The nascent chitin is generated and protected from chitinase degradation unless detergent solubilizes the PLs, showing that PsCHS translocates the newly produced chitin into the lumen of the PLs. We also attempted to resolve the PsCHS structure of the synthesized chitin-bound state, although it was not successful; the obtained high-resolution structure of the UDP/Mn2+-bound state could still assist in describing the characterization of the PsCHS’s transmembrane channel. Consistently, we demonstrate that PsCHS is indispensable and capable of translocating chitin in a process that is tightly coupled to chitin synthesis.
A dynamic interplay between chitin synthase and the proteins Expansion/Rebuf reveals that chitin polymerisation and translocation are uncoupled in Drosophila
Chitin is a highly abundant polymer in nature and a principal component of apical extracellular matrices in insects. In addition, chitin has proved to be an excellent biomaterial with multiple applications. In spite of its importance, the molecular mechanisms of chitin biosynthesis and chitin structural diversity are not fully elucidated yet. To investigate these issues, we use Drosophila as a model. We previously showed that chitin deposition in ectodermal tissues requires the concomitant activities of the chitin synthase enzyme Kkv and the functionally interchangeable proteins Exp and Reb. Exp/Reb are conserved proteins, but their mechanism of activity during chitin deposition has not been elucidated yet. Here, we carry out a cellular and molecular analysis of chitin deposition, and we show that chitin polymerisation and chitin translocation to the extracellular space are uncoupled. We find that Kkv activity in chitin translocation, but not in polymerisation, requires the activity of Exp/Reb, and in particular of its conserved Nα-MH2 domain. The activity of Kkv in chitin polymerisation and translocation correlate with Kkv subcellular localisation, and in absence of Kkv-mediated extracellular chitin deposition, chitin accumulates intracellularly as membrane-less punctae. Unexpectedly, we find that although Kkv and Exp/Reb display largely complementary patterns at the apical domain, Exp/Reb activity nonetheless regulates the topological distribution of Kkv at the apical membrane. We propose a model in which Exp/Reb regulate the organisation of Kkv complexes at the apical membrane, which, in turn, regulates the function of Kkv in extracellular chitin translocation.
Chitin and chitosan remodeling defines vegetative development and Trichoderma biocontrol
Fungal parasitism depends on the ability to invade host organisms and mandates adaptive cell wall remodeling to avoid detection and defense reactions by the host. All plant and human pathogens share invasive strategies, which aid to escape the chitin-triggered and chitin-targeted host immune system. Here we describe the full spectrum of the chitin/chitosan-modifying enzymes in the mycoparasite Trichoderma atroviride with a central role in cell wall remodeling. Rapid adaption to a variety of growth conditions, environmental stresses and host defense mechanisms such as oxidative stress depend on the concerted interplay of these enzymes and, ultimately, are necessary for the success of the mycoparasitic attack. To our knowledge, we provide the first in class description of chitin and associated glycopolymer synthesis in a mycoparasite and demonstrate that they are essential for biocontrol. Eight chitin synthases, six chitin deacetylases, additional chitinolytic enzymes, including six chitosanases, transglycosylases as well as accessory proteins are involved in this intricately regulated process. Systematic and biochemical classification, phenotypic characterization and mycoparasitic confrontation assays emphasize the importance of chitin and chitosan assembly in vegetative development and biocontrol in T. atroviride. Our findings critically contribute to understanding the molecular mechanism of chitin synthesis in filamentous fungi and mycoparasites with the overarching goal to selectively exploit the discovered biocontrol strategies.
A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei
The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei is evolved to favor solid state growth, bringing up the proposal that the submerged condition normally used during investigations on fungal physiology might be misleading.
Different Chitin Synthase Genes Are Required for Various Developmental and Plant Infection Processes in the Rice Blast Fungus Magnaporthe oryzae
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.