Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
69,262 result(s) for "Chlorophyll a"
Sort by:
Theoretical and Experimental Studies on the Evidence of 1,3-β-Glucan in Marennine of IHaslea ostrearia/I
Marennine, a blue pigment produced by the blue diatom Haslea ostrearia, is known to have some biological activities. This pigment is responsible for the greening of oysters on the West Coast of France. Other new species of blue diatom, H. karadagensis, H. silbo sp. inedit., H. provincialis sp. inedit, and H. nusantara, also produce marennine-like pigments with similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms present a commercial potential for the aquaculture, food, cosmetics, and health industries. Unfortunately, for a hundred years, the exact molecular structure of this bioactive compound has remained a mystery. A lot of hypotheses regarding the chemical structure of marennine have been proposed. The recent discovery of this structure revealed that it is a macromolecule, mainly carbohydrates, with a complex composition. In this study, some glycoside hydrolases were used to digest marennine, and the products were further analyzed using nuclear magnetic resonance (NMR) and mass spectroscopy (MS). The reducing sugar assay showed that marennine was hydrolyzed only by endo-1,3-β-glucanase. Further insight into the structure of marennine was provided by the spectrum of [sup.1]H NMR, MS, a colorimetric assay, and a computational study, which suggest that the chemical structure of marennine contains 1,3-β-glucan.
CCGAN as a Tool for Satellite-Derived Chlorophyll Ia/I Concentration Gap Reconstruction
This work represents a modification of the Context Conditional Generative Adversarial Network as a novel implementation of a non-linear gap reconstruction approach of missing satellite-derived chlorophyll a concentration data. By adjusting the loss functions of the network to focus on the structural credibility of the reconstruction, high numerical and structural reconstruction accuracies have been achieved in comparison to the original network architecture. The network also draws information from proxy data, sea surface temperature, and bathymetry, in this case, to improve the reconstruction quality. The implementation of this novel concept has been tested on the Adriatic Sea. The most accurate model reports an average error of 0.06 mg m[sup.−3] and a relative error of 3.87%. A non-deterministic method for the gap-free training dataset creation is also devised, further expanding the possibility of combining other various oceanographic data to possibly improve the reconstruction efforts. This method, the first of its kind, has satisfied the accuracy requirements set by scientific communities and standards, thus proving its validity in the initial stages of conceptual utilisation.
Structural basis for the adaptation and function of chlorophyll f in photosystem I
Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f.
Frequently asked questions about in vivo chlorophyll fluorescence: practical issues
The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
Phytoplankton community structure in the VAHINE MESOCOSM experiment
The VAHINE mesocosm experiment was designed to trigger a diazotroph bloom and to follow the subsequent transfer of diazotroph derived nitrogen (DDN) in the rest of the foodweb. Three mesocosms (50 m.sup.3) located inside the Nouméa lagoon (New Caledonia, South West Pacific) were enriched with dissolved inorganic phosphate (DIP) in order to promote N.sub.2 fixation in these Low Nutrient Low Chlorophyll (LNLC) waters. Initial diazotrophic community were dominated by diatom diazotroph associations (DDAs), mainly by Rhizosolenia/Richelia intracellularis, and by Trichodesmium which fueled enough DDN to sustain the growth of other diverse diatom species and Synechococcus populations, that were well adapted to limiting DIP levels. After DIP fertilization (1 mM) on day 4, an initial lag time of 10 days was necessary for the mesocosm ecosystems to start building up biomass. Yet changes in community structure were already observed during this first period, with a significant drop of both Synechococcus and diatom populations, while Prochlorococcus benefited from DIP-addition. At the end of this first period, corresponding to when most added DIP was consumed, the diazotroph community changed drastically and became dominated by UCYN-C populations, which were accompanied by a monospecific bloom of the diatom Cylindrotheca closterium. During the second period, biomass increased sharply together with primary production and N.sub.2 fixation fluxes near tripled. Diatom populations, as well as Synechococcus and nano-phytoeukaryotes showed a re-increase towards the end of the experiment, showing efficient transfer of DDN to non diazotrophic phytoplankton.
Photochemistry beyond the red limit in chlorophyll f–containing photosystems
Plants and cyanobacteria use chlorophyll-rich photosystem complexes to convert light energy into chemical energy. Some organisms have developed adaptations to take advantage of longer-wavelength photons. Nürnberg et al. studied photosystem complexes from cyanobacteria grown in the presence of far-red light. The authors identified the primary donor chlorophyll as one of a few chlorophyll molecules in the far-red light–adapted enzymes that were chemically altered to shift their absorption spectrum. Kinetic measurements demonstrated that far-red light is capable of directly driving water oxidation, despite having less energy than the red light used by most photosynthetic organisms. Science , this issue p. 1210 A chlorophyll variant with far-red absorption is involved in photosynthesis in cyanobacteria adapted to far red light. Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy “red limit” of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.
Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection
Diverse algae of the red lineage possess chlorophyll a -binding proteins termed LHCR, comprising the PSI light-harvesting system, which represent an ancient antenna form that evolved in red algae and was acquired through secondary endosymbiosis. However, the function and regulation of LHCR complexes remain obscure. Here we describe isolation of a Nannochloropsis oceanica LHCR mutant, named hlr1 , which exhibits a greater tolerance to high-light (HL) stress compared to the wild type. We show that increased tolerance to HL of the mutant can be attributed to alterations in PSI, making it less prone to ROS production, thereby limiting oxidative damage and favoring growth in HL. HLR1 deficiency attenuates PSI light-harvesting capacity and growth of the mutant under light-limiting conditions. We conclude that HLR1, a member of a conserved and broadly distributed clade of LHCR proteins, plays a pivotal role in a dynamic balancing act between photoprotection and efficient light harvesting for photosynthesis. LHCR proteins are ancient chlorophyll a -binding antennas that evolved in diverse algae of the red lineage. Here Lu et al. characterize a red lineage LHCR mutant and show reduced oxidative damage in high light but attenuated growth under low light, thus demonstrating how LHCR proteins impact the balance between photoprotection and light harvesting.
Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications
Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity and is a commonly used technique in plant physiology. The sensitivity of PSII activity to abiotic and biotic factors has made this a key technique not only for understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental change. This, along with low cost and ease of collecting data, has resulted in the appearance of a large array of instrument types for measurement and calculated parameters which can be bewildering for the new user. Moreover, its accessibility can lead to misuse and misinterpretation when the underlying photosynthetic processes are not fully appreciated. This review is timely because it sits at a point of renewed interest in chlorophyll fluorescence where fast measurements of photosynthetic performance are now required for crop improvement purposes. Here we help the researcher make choices in terms of protocols using the equipment and expertise available, especially for field measurements. We start with a basic overview of the principles of fluorescence analysis and provide advice on best practice for taking pulse amplitude-modulated measurements. We also discuss a number of emerging techniques for contemporary crop and ecology research, where we see continual development and application of analytical techniques to meet the new challenges that have arisen in recent years. We end the review by briefly discussing the emerging area of monitoring fluorescence, chlorophyll fluorescence imaging, field phenotyping, and remote sensing of crops for yield and biomass enhancement.
Flash drought early warning based on the trajectory of solar-induced chlorophyll fluorescence
Flash drought often leads to devastating effects in multiple sectors and presents a unique challenge for drought early warning due to its sudden onset and rapid intensification. Existing drought monitoring and early warning systems are based on various hydrometeorological variables reaching thresholds of unusually low water content. Here, we propose a flash drought early warning approach based on spaceborne measurements of solar-induced chlorophyll fluorescence (SIF), a proxy of photosynthesis that captures plant response to multiple environmental stressors. Instead of negative SIF anomalies, we focus on the subseasonal trajectory of SIF and consider slower-than-usual increase or faster-than-usual decrease of SIF as an early warning for flash drought onset. To quantify the deviation of SIF trajectory from the climatological norm, we adopt existing formulas for a rapid change index (RCI) and apply the RCI analysis to spatially downscaled 8-d SIF data from GOME-2 during 2007–2018. Using two well-known flash drought events identified by the operational US Drought Monitor (in 2012 and 2017), we show that SIF RCI can produce strong predictive signals of flash drought onset with a lead time of 2 wk to 2 mo and can also predict drought recovery with several weeks of lead time. While SIF RCI shows great early warning potential, its magnitude diminishes after drought onset and therefore cannot reflect the current drought intensity. With its long lead time and direct relevance for agriculture, SIF RCI can support a global early warning system for flash drought and is especially useful over regions with sparse hydrometeorological data.
Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents
A set of equations for determining chlorophyll a (Chl a) and accessory chlorophylls b, c2, c1 + c2 and the special case of Acaryochloris marina, which uses Chl d as its primary photosynthetic pigment and also has Chl a, have been developed for 90% acetone, methanol and ethanol solvents. These equations for different solvents give chlorophyll assays that are consistent with each other. No algorithms for Chl c compounds (c2, c1 + c2) in the presence of Chl a have previously been published for methanol or ethanol. The limits of detection (and inherent error, +/- 95% confidence limit), for chlorophylls in all organisms tested, was generally less than 0.1 microg/ml. The Chl a and b algorithms for green algae and land plants have very small inherent errors (< 0.01 microg/ml). Chl a and d algorithms for Acaryochloris marina are consistent with each other, giving estimates of Chl d/a ratios which are consistent with previously published estimates using HPLC and a rarely used algorithm originally published for diethyl ether in 1955. The statistical error structure of chlorophyll algorithms is discussed. The relative error of measurements of chlorophylls increases hyperbolically in diluted chlorophyll extracts because the inherent errors of the chlorophyll algorithms are constants independent of the magnitude of absorbance readings. For safety reasons, efficient extraction of chlorophylls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of chlorophylls. The methanol algorithms would be convenient for assays associated with HPLC work.