Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
271 result(s) for "Chorioamnionitis - microbiology"
Sort by:
Chorioamnionitis and neonatal outcomes
Chorioamnionitis or intrauterine inflammation is a frequent cause of preterm birth. Chorioamnionitis can affect almost every organ of the developing fetus. Multiple microbes have been implicated to cause chorioamnionitis, but “sterile” inflammation appears to be more common. Eradication of microorganisms has not been shown to prevent the morbidity and mortality associated with chorioamnionitis as inflammatory mediators account for continued fetal and maternal injury. Mounting evidence now supports the concept that the ensuing neonatal immune dysfunction reflects the effects of inflammation on immune programming during critical developmental windows, leading to chronic inflammatory disorders as well as vulnerability to infection after birth. A better understanding of microbiome alterations and inflammatory dysregulation may help develop better treatment strategies for infants born to mothers with chorioamnionitis.
Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes
Preterm birth is a major cause of neonatal mortality and morbidity worldwide. Bacterial infection and the subsequent inflammatory response are recognised as an important cause of preterm birth. It is hypothesised that these organisms ascend the cervical canal, colonise placental tissues, cause chorioamnionitis and in severe cases infect amniotic fluid and the foetus. However, the presence of bacteria within the intrauterine cavity does not always precede chorioamnionitis or preterm birth. Whereas previous studies observing the types of bacteria present have been limited in size and the specificity of a few predetermined organisms, in this study we characterised bacteria found in placental tissues from a cohort of 1391 women in rural Malawi using 16S ribosomal RNA gene sequencing. We found that specific bacteria found concurrently on placental tissues associate with chorioamnionitis and delivery of a smaller newborn. Severe chorioamnionitis was associated with a distinct difference in community members, a higher bacterial load and lower species richness. Furthermore, Sneathia sanguinengens and Peptostreptococcus anaerobius found in both matched participant vaginal and placental samples were associated with a lower newborn length-for-age Z-score. This is the largest study to date to examine the placental microbiome and its impact of birth outcomes. Our results provide data on the role of the vaginal microbiome as a source of placental infection as well as the possibility of therapeutic interventions against targeted organisms during pregnancy.
The Airway Microbiome at Birth
Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system and dysbiosis in its development may set the stage for subsequent lung disease.
Membrane Vesicles of Group B Streptococcus Disrupt Feto-Maternal Barrier Leading to Preterm Birth
Infection of the genitourinary tract with Group B Streptococcus (GBS), an opportunistic gram positive pathogen, is associated with premature rupture of amniotic membrane and preterm birth. In this work, we demonstrate that GBS produces membrane vesicles (MVs) in a serotype independent manner. These MVs are loaded with virulence factors including extracellular matrix degrading proteases and pore forming toxins. Mice chorio-decidual membranes challenged with MVs ex vivo resulted in extensive collagen degradation leading to loss of stiffness and mechanical weakening. MVs when instilled vaginally are capable of anterograde transport in mouse reproductive tract. Intra-amniotic injections of GBS MVs in mice led to upregulation of pro-inflammatory cytokines and inflammation mimicking features of chorio-amnionitis; it also led to apoptosis in the chorio-decidual tissue. Instillation of MVs in the amniotic sac also resulted in intrauterine fetal death and preterm delivery. Our findings suggest that GBS MVs can independently orchestrate events at the feto-maternal interface causing chorio-amnionitis and membrane damage leading to preterm birth or fetal death.
Vaginal microbiome as a tool for prediction of chorioamnionitis in preterm labor: a pilot study
Intra-amniotic infection (IAI) is a major cause of preterm birth with a poor perinatal prognosis. We aimed to determine whether analyzing vaginal microbiota can evaluate the risk of chorioamnionitis (CAM) in preterm labor cases. Vaginal discharge samples were collected from 83 pregnant women admitted for preterm labor. Based on Blanc’s classification, the participants were divided into CAM (stage ≥ II; n = 46) and non-CAM (stage ≤ I; n = 37) groups. The 16S rDNA amplicons (V1–V2) from vaginal samples were sequenced and analyzed. Using a random forest algorithm, the bacterial species associated with CAM were identified, and a predictive CAM (PCAM) scoring method was developed. The α diversity was significantly higher in the CAM than in the non-CAM group ( P  < 0.001). The area under the curve was 0.849 (95% confidence interval 0.765–0.934) using the PCAM score. Among patients at < 35 weeks of gestation, the PCAM group (n = 22) had a significantly shorter extended gestational period than the non-PCAM group (n = 25; P  = 0.022). Multivariate analysis revealed a significant difference in the frequency of developmental disorders in 3-year-old infants (PCAM, 28%, non-PCAM, 4%; P  = 0.022). Analyzing vaginal microbiota can evaluate the risk of IAI. Future studies should establish appropriate interventions for IAI high-risk patients to improve perinatal prognosis.
Impact of meconium-stained amniotic fluid thickness on maternal infectious morbidity: a comprehensive clinical and microbiological analysis
Purpose The aim of this study was to investigate the correlation between the thickness of meconium-stained amniotic fluid (MSAF) and maternal infectious morbidity. Methods A retrospective study of 15,950 term singleton pregnancies at a tertiary hospital (2020–2024). Women were categorized into four groups based on the presence and thickness of MSAF: clear, light, intermediate, and thick. The co-primary outcomes were clinical chorioamnionitis and puerperal endometritis, defined as a composite maternal infectious morbidity. In women with intrapartum fever (IPF), chorioamniotic swabs were obtained and compared according MSAF thickness. Multivariate analysis identified predictors of a composite maternal infections and adverse neonatal outcomes. Results Of the cohort, 13,745 had clear amniotic fluid, and 2,205 had MSAF (561 light, 1,426 intermediate, 218 thick). The incidence of maternal infections increased with MSAF thickness, with thick MSAF showing the highest rates of clinical chorioamnionitis (4.1%, p  < 0.001) and endometritis (1.4%, p  = 0.039). In IPF cases, thicker MSAF was associated with a higher prevalence of positive swab cultures, particularly of Enterobacteriaceae (61.9%). Group B Streptococcus (GBS) remained consistent across all MSAF groups. Multivariate analysis showed that MSAF levels were associated with increased maternal infectious morbidity ( p  < 0.001). Additional risk factors for maternal infections included nulliparity ( p  < 0.001), catheter balloon insertion ( p  = 0.004), prolonged ROM ( p  < 0.001), and cesarean delivery ( p  < 0.001). In contrast, only intermediate ( p  < 0.001) and thick MSAF ( p  < 0.001) correlated with adverse neonatal outcomes. Conclusion Greater severity of MSAF is associated with increased maternal infectious morbidity, especially infections related to Enterobacteriaceae. Studies about preventive measures in cases of thick MSAF are warranted.
Porphyromonas gingivalis within Placental Villous Mesenchyme and Umbilical Cord Stroma Is Associated with Adverse Pregnancy Outcome
Intrauterine presence of Porphyromonas gingivalis (Pg), a common oral pathobiont, is implicated in preterm birth. Our aim was to determine if the location of Pg within placental and/or umbilical cord sections was associated with a specific delivery diagnosis at preterm delivery (histologic chorioamnionitis, chorioamnionitis with funisitis, preeclampsia, and preeclampsia with HELLP-syndrome, small for gestational age). The prevalence and location of Pg within archived placental and umbilical cord specimens from preterm (25 to 32 weeks gestation) and term control cohorts were evaluated by immunofluorescent histology. Detection of Pg was performed blinded to pregnancy characteristics. Multivariate analyses were performed to evaluate independent effects of gestational age, being small for gestational age, specific preterm delivery diagnosis, antenatal steroids, and delivery mode, on the odds of having Pg in the preterm tissue. Within the preterm cohort, 49 of 97 (51%) placentas and 40 of 97 (41%) umbilical cord specimens were positive for Pg. Pg within the placenta was significantly associated with shorter gestation lengths (OR 0.63 (95%CI: 0.48-0.85; p = 0.002) per week) and delivery via caesarean section (OR 4.02 (95%CI: 1.15-14.04; p = 0.03), but not with histological chorioamnionitis or preeclampsia. However, the presence of Pg in the umbilical cord was significantly associated with preeclampsia: OR 6.73 (95%CI: 1.31-36.67; p = 0.02). In the term cohort, 2 of 35 (6%) placentas and no umbilical cord term specimens were positive for Pg. The location of Pg within the placenta was different between preterm and term groups in that Pg within the villous mesenchyme was only detected in the preterm cohort, whereas Pg associated with syncytiotrophoblasts was found in both preterm and term placentas. Taken together, our results suggest that the presence of Pg within the villous stroma or umbilical cord may be an important determinant in Pg-associated adverse pregnancy outcomes.
Streptococcus agalactiae Induces Placental Macrophages To Release Extracellular Traps Loaded with Tissue Remodeling Enzymes via an Oxidative Burst-Dependent Mechanism
Streptococcus agalactiae , also known as group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results in adverse pregnancy outcomes are still incompletely understood. This study evaluated interactions between GBS and placental macrophages. The data demonstrate that in response to infection, placental macrophages release extracellular traps capable of killing GBS. Additionally, this work establishes that proteins associated with extracellular trap fibers include several matrix metalloproteinases that have been associated with chorioamnionitis. In the context of pregnancy, placental macrophage responses to bacterial infection might have beneficial and adverse consequences, including protective effects against bacterial invasion, but they may also release important mediators of membrane breakdown that could contribute to membrane rupture or preterm labor. Streptococcus agalactiae , or group B Streptococcus (GBS), is a common perinatal pathogen. GBS colonization of the vaginal mucosa during pregnancy is a risk factor for invasive infection of the fetal membranes (chorioamnionitis) and its consequences such as membrane rupture, preterm labor, stillbirth, and neonatal sepsis. Placental macrophages, or Hofbauer cells, are fetally derived macrophages present within placental and fetal membrane tissues that perform vital functions for fetal and placental development, including supporting angiogenesis, tissue remodeling, and regulation of maternal-fetal tolerance. Although placental macrophages as tissue-resident innate phagocytes are likely to engage invasive bacteria such as GBS, there is limited information regarding how these cells respond to bacterial infection. Here, we demonstrate in vitro that placental macrophages release macrophage extracellular traps (METs) in response to bacterial infection. Placental macrophage METs contain proteins, including histones, myeloperoxidase, and neutrophil elastase similar to neutrophil extracellular traps, and are capable of killing GBS cells. MET release from these cells occurs by a process that depends on the production of reactive oxygen species. Placental macrophage METs also contain matrix metalloproteases that are released in response to GBS and could contribute to fetal membrane weakening during infection. MET structures were identified within human fetal membrane tissues infected ex vivo , suggesting that placental macrophages release METs in response to bacterial infection during chorioamnionitis. IMPORTANCE Streptococcus agalactiae , also known as group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results in adverse pregnancy outcomes are still incompletely understood. This study evaluated interactions between GBS and placental macrophages. The data demonstrate that in response to infection, placental macrophages release extracellular traps capable of killing GBS. Additionally, this work establishes that proteins associated with extracellular trap fibers include several matrix metalloproteinases that have been associated with chorioamnionitis. In the context of pregnancy, placental macrophage responses to bacterial infection might have beneficial and adverse consequences, including protective effects against bacterial invasion, but they may also release important mediators of membrane breakdown that could contribute to membrane rupture or preterm labor.
Case report of Actinomyces odontolyticus chorioamnionitis as a cause of extremely preterm birth and second trimester pregnancy loss
Background Actinomyces odontolyticus is anaerobic Gram-positive bacteria associated with abscess formations mostly in abdominal and thoracic cavity but rarely described within endometrium as a cause of adverse perinatal outcomes, including second trimester loss and chorioamnionitis.
Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome
Chorioamnionitis (CAM), an inflammation of the foetal membranes due to infection, is associated with preterm birth and poor perinatal prognosis. The present study aimed to determine whether CAM can be diagnosed prior to delivery based on the bacterial composition of the amniotic fluid (AF). AF samples from 79 patients were classified according to placental inflammation: Stage III (n = 32), CAM; Stage II (n = 27), chorionitis; Stage 0-I (n = 20), sub-chorionitis or no neutrophil infiltration; and normal AF in early pregnancy (n = 18). Absolute quantification and sequencing of 16S rDNA showed that in Stage III, the 16S rDNA copy number was significantly higher and the α-diversity index lower than those in the other groups. In principal coordinate analysis, Stage III formed a separate cluster from Stage 0-I, normal AF, and blank. Forty samples were classified as positive for microbiomic CAM (miCAM) defined by the presence of 11 bacterial species that were found to be significantly associated with CAM and some parameters of perinatal prognosis. The diagnostic accuracy for CAM according to miCAM was: sensitivity, approximately 94%, and specificity, 79–87%. Our findings indicate the possibility of predicting CAM prior to delivery based on the AF microbiome profile.