Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,963 result(s) for "Chromosome 4"
Sort by:
Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands
The molecular pathogenesis of salivary gland acinic cell carcinoma (AciCC) is poorly understood. The secretory Ca-binding phosphoprotein (SCPP) gene cluster at 4q13 encodes structurally related phosphoproteins of which some are specifically expressed at high levels in the salivary glands and constitute major components of saliva. Here we report on recurrent rearrangements [t(4;9)(q13;q31)] in AciCC that translocate active enhancer regions from the SCPP gene cluster to the region upstream of Nuclear Receptor Subfamily 4 Group A Member 3 (NR4A3) at 9q31. We show that NR4A3 is specifically upregulated in AciCCs, and that active chromatin regions and gene expression signatures in AciCCs are highly correlated with the NR4A3 transcription factor binding motif. Overexpression of NR4A3 in mouse salivary gland cells increases expression of known NR4A3 target genes and has a stimulatory functional effect on cell proliferation. We conclude that NR4A3 is upregulated through enhancer hijacking and has important oncogenic functions in AciCC. Acinic cell carcinoma (AciCC) is a rare salivary gland carcinoma that is poorly understood. Here the authors perform genomic, transcriptomic and epigenomic profiling of AciCC and find highly recurrent and specific rearrangements [t(4;9)(q13;q31)], which lead to enhancer hijacking that activates oncogenic transcription factor NR4A3.
A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans
Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.
Prenatal diagnosis of de novo small supernumerary marker chromosome 4q (4q11-q12): A case report
Background: Small supernumerary marker chromosomes (sSMCs) are chromosomal fragments with abnormal structures found in patients with fertility problems and developmental delay. They may be detected in amniotic cell karyotypes. sSMCs are categorized as hereditary or de novo. Here, we describe a case of prenatal de novo 4q11q12 sSMC and its molecular cytogenetic features which had no apparent phenotypic abnormality. Case: The fetus of a 36-yr-old pregnant woman was detected positive for Down’s syndrome (trisomy 21) at the 16th wk of gestation. Quantitative fluorescent polymerase chain reaction technique was applied for the rapid detection of numerical aneuploidy of chromosomes X, Y, 13, 18, and 21 microsatellites. Array comparative genomic hybridization (array CGH) technique was also conducted following the karyotype analysis of amniotic cells. The karyotype analysis was also done for the parents. Quantitative fluorescent polymerase chain reaction result revealed a male fetus with a normal chromosomal pattern, while the amniocentesis karyotype analysis identified a male fetus with a marker chromosome (47, XY, +mar), and the sSMC were existing in 100% of amniocyte metaphase spreads. The parents’ normal karyotypes indicated that the sSMC was de novo. Array CGH analysis revealed a 6.48-Mb duplication at 4q11q12. Eventually, the parents decided to terminate the pregnancy by legal abortion. Conclusion: Our study highlights the importance of the application of array CGH in combination with karyotype analysis for rapid and precise prenatal diagnosis of partial aneuploidy region.  Key words: Prenatal diagnosis, Array CGH, Chromosome 4, Chromosome markers.
Chromosome 10q-linked FSHD identifies DUX4 as principal disease gene
BackgroundFacioscapulohumeral dystrophy (FSHD) is an inherited muscular dystrophy clinically characterised by muscle weakness starting with the facial and upper extremity muscles. A disease model has been developed that postulates that failure in somatic repression of the transcription factor DUX4 embedded in the D4Z4 repeat on chromosome 4q causes FSHD. However, due to the position of the D4Z4 repeat close to the telomere and the complex genetic and epigenetic aetiology of FSHD, there is ongoing debate about the transcriptional deregulation of closely linked genes and their involvement in FSHD.MethodDetailed genetic characterisation and gene expression analysis of patients with clinically confirmed FSHD and control individuals.ResultsIdentification of two FSHD families in which the disease is caused by repeat contraction and DUX4 expression from chromosome 10 due to a de novo D4Z4 repeat exchange between chromosomes 4 and 10. We show that the genetic lesion causal to FSHD in these families is physically separated from other candidate genes on chromosome 4. We demonstrate that muscle cell cultures from affected family members exhibit the characteristic molecular features of FSHD, including DUX4 and DUX4 target gene expression, without showing evidence for transcriptional deregulation of other chromosome 4-specific candidate genes.ConclusionThis study shows that in rare situations, FSHD can occur on chromosome 10 due to an interchromosomal rearrangement with the FSHD locus on chromosome 4q. These findings provide further evidence that DUX4 derepression is the dominant disease pathway for FSHD. Hence, therapeutic strategies should focus on DUX4 as the primary target.
Molecular Cloning of Mouse Homologue of Enamel Protein C4orf26 and Its Phosphorylation by FAM20C
It is widely accepted that cellular processes are controlled by protein phosphorylation and has become increasingly clear that protein degradation, localization and conformation as well as protein–protein interaction are the examples of subsequent cellular events modulated by protein phosphorylation. Enamel matrix proteins belong to members of the secretory calcium binding phosphoprotein (SCPP) family clustered on chromosome 4q21, and most of the SCPP phosphoproteins have at least one S-X-E motifs (S; serine, X; any amino acid, E; glutamic acid). It has been reported that mutations in C4orf26 gene, located on chromosome 4q21, are associated with autosomal recessive type of Amelogenesis Imperfecta (AI), a hereditary condition that affects enamel formation/mineralization. The enamel phenotype observed in patients with C4orf26 mutations is hypomineralized and partially hypoplastic, indicating that C4orf26 protein may function at both secretory and maturation stages of amelogenesis. The previous in vitro study showed that the synthetic phosphorylated peptide based on C4orf26 protein sequence accelerates hydroxyapatite nucleation. Here we show the molecular cloning of Gm1045, mouse homologue of C4orf26, which has 2 splicing isoforms. Immunohistochemical analysis demonstrated that the immunolocalization of Gm1045 is mainly observed in enamel matrix in vivo. Our report is the first to show that FAM20C, the Golgi casein kinase, phosphorylates C4orf26 and Gm1045 in cell cultures. The extracellular localization of C4orf26/Gm1045 was regulated by FAM20C kinase activity. Thus, our data point out the biological importance of enamel matrix-kinase control of SCPP phosphoproteins and may have a broad impact on the regulation of amelogenesis and AI.
Analysis of DNA methylation associates the cystine–glutamate antiporter SLC7A11 with risk of Parkinson’s disease
An improved understanding of etiological mechanisms in Parkinson’s disease (PD) is urgently needed because the number of affected individuals is projected to increase rapidly as populations age. We present results from a blood-based methylome-wide association study of PD involving meta-analysis of 229 K CpG probes in 1,132 cases and 999 controls from two independent cohorts. We identify two previously unreported epigenome-wide significant associations with PD, including cg06690548 on chromosome 4. We demonstrate that cg06690548 hypermethylation in PD is associated with down-regulation of the SLC7A11 gene and show this is consistent with an environmental exposure, as opposed to medications or genetic factors with effects on DNA methylation or gene expression. These findings are notable because SLC7A11 codes for a cysteine-glutamate anti-porter regulating levels of the antioxidant glutathione, and it is a known target of the environmental neurotoxin β-methylamino-L-alanine (BMAA). Our study identifies the SLC7A11 gene as a plausible biological target in PD. Parkinson’s disease (PD) is a common neurodegenerative disorder with a complex etiology involving genetics and the environment. Here, Vallerga et al. identify two CpG probes associated with PD in a blood cell type-corrected epigenome-wide meta-analysis, implicating the SLC7A11 gene as a plausible biological target.
Filling in the Gap of Human Chromosome 4: Single Molecule Real Time Sequencing of Macrosatellite Repeats in the Facioscapulohumeral Muscular Dystrophy Locus
A majority of facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of macrosatellite repeats called D4Z4 that are located in the subtelomeric region of human chromosome 4q35. Sequencing the FSHD locus has been technically challenging due to its long size and nearly identical nature of repeat elements. Here we report sequencing and partial assembly of a BAC clone carrying an entire FSHD locus by a single molecule real time (SMRT) sequencing technology which could produce long reads up to about 18 kb containing D4Z4 repeats. De novo assembly by Hierarchical Genome Assembly Process 1 (HGAP.1) yielded a contig of 41 kb containing all but a part of the most distal D4Z4 element. The validity of the sequence model was confirmed by an independent approach employing anchored multiple sequence alignment by Kalign using reads containing unique flanking sequences. Our data will provide a basis for further optimization of sequencing and assembly conditions of D4Z4.
Optimising the molecular investigation of the FSHD locus: an integrated workflow using single molecule optical mapping and Southern blot analysis
PurposeFacioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder caused by contraction or hypomethylation of the D4Z4 repeat array located at chromosome 4q35. For the disease to manifest, a permissive haplotype is required, as it enables the pathogenic expression of the DUX4 gene. FSHD cases often involve complex rearrangements, such as intrachromosomal rearrangements and translocations, which complicate diagnosis using conventional methods. This study focuses on evaluating the diagnostic potential of single molecule optical mapping (SMOM) for FSHD with complex rearrangements, particularly in cases involving 4q-10q translocations, which present challenges for detection by SMOM alone. Furthermore, we propose an integrated diagnostic strategy, combining SMOM with complementary methods, to improve accuracy in these challenging cases.MethodsWe reviewed the test results of 238 patients with suspected FSHD, and 25 participants with presumed complex rearrangements were included in this study. SMOM was performed on these participants, and the results were manually reviewed and compared with those obtained from Southern blot (SB) analysis.ResultsNine patients carrying 4q-10q translocation exhibited discrepancies between the two methods. Linear regression analysis revealed a significant discrepancy in chromosomal assignment between SB and SMOM in cases suspected of translocation.ConclusionsGiven the complex nature of FSHD, none of the current methods can independently provide a definitive diagnosis. As misdiagnosis may occur when relying on a single technique, we propose an integrated diagnostic approach, with SMOM as the first-line test.
Cytogenomic characterization of 1q43q44 deletion associated with 4q32.1q35.2 duplication and phenotype correlation
Background Microdeletion of 1q43q44 causes a syndrome characterized by intellectual disability (ID), speech delay, seizures, microcephaly (MIC), corpus callosum abnormalities (CCA) and characteristic facial features. Duplication of 4q is presented with minor to severe ID, MIC and facial dysmorphism. We aimed to verify the correlation between genotype/phenotype in a patient with 1q43q44 deletion associated with 4q32.1q35.2 duplication. Case presentation We report on a 3 year-old female patient with delayed motor and mental milestones, MIC and facial dysmorphism. She is a child of non-consanguineous parents and no similarly affected family members. CT brain showed abnormal gyral patterns, hypogenesis of corpus callosum and bilateral deep Sylvian fissure. Electroencephalogram showed frontotemporal epileptogenic focus. Her karyotype was revealed as 46,XX,add(1)(q44). Fluorescence in situ hybridization (FISH) using whole chromosome paint (WCP1) and subtelomere 1q revealed that the add segment was not derived from chromosome 1 and there was the deletion of subtelomere 1q. Multiple ligation probe amplification (MLPA) subtelomere kit revealed the deletion of 1q and duplication of 4q. Array CGH demonstrated the 6.5 Mb deletion of 1q and 31 Mb duplication of chromosome 4q. Conclusion The phenotype of our patient mainly reflects the effects of haploinsufficiency of AKT3, HNRNPU, ZBTB18 genes associated with duplication of GLRA3, GMP6A, HAND2 genes. Patients presented with ID, seizures, MIC together with CCA are candidates for prediction of 1q43q44 microdeletion and cytogenomic analysis.
HPV insertional pattern as a personalized tumor marker for the optimized tumor diagnosis and follow-up of patients with HPV-associated carcinomas: a case report
Background In clinical oncology, only a few applications have been developed using HPV as a personalized tumor marker, a lack most probably related to the limited information obtained by the classical Polymerase Chain Reaction (PCR) approach. To overcome this limitation, we have recently developed the capture-based Next-Generation Sequencing (NGS) “CaptHPV” assay, designed to provide an extensive and comprehensive molecular characterization of HPV DNA sequences associated with neoplasias, ie the sequence of the viral genome (245 genotypes), its physical state, viral load, integration site and genomic alterations at integration locus. These data correspond to highly specific tumor markers that can be used to improve diagnosis and patient’s follow-up. Case presentation We report here a case that is a straightforward and practical illustration of the power of the CaptHPV method. A patient developed successively a carcinoma of the anal canal and of the tongue. The two tumors were squamous cell carcinoma, found associated with HPV16 using PCR. In order to document a possible metastasis to the tongue from the anal cancer, we performed CaptHPV analysis on the two tumors. The analysis of the anal carcinoma found 55 viral/human hybrid reads allowing the identification of the HPV16 DNA integration in the 4q25 chromosomal band locus with a 178,808 bp deletion in the cell genome. Molecular analysis of the tongue tumor disclosed 6110 reads of HPV16, with a viral pattern strictly identical to that of the anal tumor. A total of 131 hybrid reads between HPV16 and the cell genome were found, corresponding exactly to the same locus of integration of viral DNA at the 4q25 site. The 178,808 bp genomic deletion was also found in the lingual tumor. The exact identity of HPV insertional signatures in the two tumors, demonstrates unambiguously that the tongue tumor derived from the anal cancer whereas neither histological immunophenotyping nor classical viral analysis using PCR could allow a definitive diagnosis. Conclusion Our observation indicates that the establishment of a detailed cartography of HPV DNA sequences in a tumor specimen provides crucial information for the design of specific biomarkers that can be used for diagnostic, prognostic or predictive purposes.