Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Chrysanthemum morifolium Ramat"
Sort by:
Deep learning for image-based large-flowered chrysanthemum cultivar recognition
Background Cultivar recognition is a basic work in flower production, research, and commercial application. Chinese large-flowered chrysanthemum ( Chrysanthemum  ×  morifolium Ramat.) is miraculous because of its high ornamental value and rich cultural deposits. However, the complicated capitulum structure, various floret types and numerous cultivars hinder chrysanthemum cultivar recognition. Here, we explore how deep learning method can be applied to chrysanthemum cultivar recognition. Results We propose deep learning models with two networks VGG16 and ResNet50 to recognize large-flowered chrysanthemum. Dataset A comprising 14,000 images for 103 cultivars, and dataset B comprising 197 images from different years were collected. Dataset A was used to train the networks and determine the calibration accuracy (Top-5 rate of above 98%), and dataset B was used to evaluate the model generalization performance (Top-5 rate of above 78%). Moreover, gradient-weighted class activation mapping (Grad-CAM) visualization and feature clustering analysis were used to explore how the deep learning model recognizes chrysanthemum cultivars. Conclusion Deep learning method applied to cultivar recognition is a breakthrough in horticultural science with the advantages of strong recognition performance and high recognition speed. Inflorescence edge areas, disc floret areas, inflorescence colour and inflorescence shape may well be the key factors in model decision-making process, which are also critical in human decision-making.
Enhancing Germination and Growth of Chrysanthemum Synthetic Seeds Through Iron Oxide Nanoparticles and Indole-3-Acetic Acid: Impact of Treatment Duration on Metabolic Activity and Genetic Stability
This study investigated the effects of pure iron oxide nanoparticles (Fe O NPs), citrate-stabilized iron oxide nanoparticles (Fe O CA NPs), and indole-3-acetic acid (IAA), applied at various time regimes, on the germination, growth, and ex vitro development of chrysanthemum synthetic seeds. The genetic and metabolic stability of the plants was also assessed. Nodal segments of /Ramat./ Hemsl. 'Richmond', with a single axillary bud, were encapsulated in 3% calcium alginate with the addition of IAA (1 mg·L ) and/or NPs (7.7 mg·L ). The synthetic seeds were cultured in vitro for 30 or 60 days on a water-agar medium and then transplanted to the greenhouse for further analyses. Results indicated that IAA and Fe O CA NPs applied singularly significantly enhanced germination rates (83.33-92.18%) compared with the IAA- and NP-free control (56.67-64.18%), regardless of treatment time. The simultaneous use of IAA and Fe O CA NPs promoted longer shoot development after 30 days of treatment but showed negative effects after extended exposure. The same combination improved rooting efficiency compared to IAA alone. Supplementation with NPs improved acclimatization rates for younger plants but had variable effects on older plants. Leaf growth metrics were enhanced with Fe O CA NPs in plants after 30 days of treatment, yet no significant differences were observed in leaf dimensions after 60 days. The content of flavonoids, anthocyanins, and chlorophyll was affected by the exposure duration. Biochemical analyses revealed increased total polyphenol content and antioxidant capacity (FRAP, ABTS) in treated plants, particularly with IAA and Fe O CA NPs. Start codon targeted (SCoT) analyses showed no polymorphisms among treated plants, confirming their genetic stability. The study found that the combination of IAA and Fe O CA NPs improved germination and shoot development in chrysanthemum synthetic seeds, while maintaining genetic stability, although prolonged exposure negatively affected plant growth metrics.
Effect of Parental Components and Pollination Frequency on the Setting and Germination of Chrysanthemum Seeds
The chrysanthemum is one of the most economically important ornamental plants in the Asteraceae family. Unfortunately, the efficacy of breeding through the traditional crossing in this species is highly limited due to inefficient seed setting. Therefore, this study aimed to investigate the effect of parental components and crossing frequency on the set and germination of chrysanthemum seeds. For this purpose, seven chrysanthemum cultivars were used as parental components in 10 crossing combinations. The crossing was performed either once or twice a week, for three successive weeks, starting from November. Next, the obtained chrysanthemum seeds were collected, sown in pots in a greenhouse, and seedling growth was observed. The efficacy of the seed set, germination rate, and plant development was evaluated. The plants of the F1 generation were brought to flowering and evaluated phenotypically in the three successive vegetative propagation cycles. Both the arrangement of parental components and pollination frequency affected the production of seeds. More seeds were obtained if pollination was performed twice a week and if the ‘Wda’ cultivar was used as the maternal component. Approximately 50–100% of the seeds were able to germinate in the greenhouse, depending on the parental components, which also affected the developmental pace of the seedlings. Nearly all of the seedlings (80–100%) developed into properly growing plants. Out of 10 parental combinations tested, 7 produced the F1 offspring. The obtained plants varied in the shape, size, and color of their flowers. A total of eight new phenotypes were found, among which six new cultivars granted plant breeders’ rights, so far. The present research expands knowledge on how effective crossing should be performed.
Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels
Background Chlorophylls (Chls) are magnesium-containing tetrapyrrole macromolecules responsible for the green color in plants. The Chl metabolic pathway has been intensively studied and nearly all the enzymes involved in the pathway have been identified and characterized. Synthesis and activity of these enzymes are tightly regulated in tissue- and developmental stage–specific manners. Leaves contain substantial amounts of Chls because Chls are indispensable for photosynthesis. In contrast, petals generally contain only trace amounts of Chls, which if present would mask the bright petal color. Limited information is available about the mechanisms that control such tissue-specific accumulation of Chls. Results To identify the regulatory steps that control Chl accumulation, we compared gene expression in petals and leaves of chrysanthemum cultivars with different Chl levels. Microarray and quantitative real-time PCR analyses showed that the expression levels of Chl biosynthesis genes encoding glutamyl-tRNA reductase, Mg-protoporphyrin IX chelatase, Mg-protoporphyrin IX monomethylester cyclase, and protochlorophyllide oxidoreductase were well associated with Chl content: their expression levels were lower in white petals than in green petals, and were highest in leaves. Among Chl catabolic genes, expression of STAY-GREEN , encoding Mg-dechelatase, which is a key enzyme controlling Chl degradation, was considerably higher in white and green petals than in leaves. We searched for transcription factor genes whose expression was well related to Chl level in petals and leaves and found three such genes encoding MYB113, CONSTANS-like 16, and DREB and EAR motif protein. Conclusions From our transcriptome analysis, we assume that a low rate of Chl biosynthesis and a high rate of Chl degradation lead to the absence of Chls in white chrysanthemum petals. We identified several candidate transcription factors that might affect Chl accumulation in chrysanthemum petals. Functional analysis of these transcription factors will provide a basis for future molecular studies of tissue-specific Chl accumulation.
Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel
Eco-friendly green synthesis with plant extracts plays a very important role in nanotechnology, without any harmful chemicals. In this report, the synthesis of water-soluble silver nanoparticles was developed by treating silver ions with Chrysanthemum morifolium Ramat. extract at room temperature. The effect of the extract on the formation of silver nanoparticles was characterized by ultraviolet and visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The ultraviolet and visible absorption spectroscopy results show a strong resonance centered on the surface of silver nanoparticles (AgNP) at 430 nm. The Fourier transform infrared spectroscopy spectral study demonstrates Chrysanthemum morifolium Ramat. extract acted as the reducing and stabilizing agent during the synthesis. The X-ray diffraction analysis confirmed that the synthesized AgNP are single crystallines, corresponding with the result of transmission electron microscopy. Water-soluble AgNP, with an approximate size of 20 nm-50 nm were also observed in the transmission electron microscopy image. The bactericidal properties of the synthesized AgNP were investigated using the agar-dilution method and the growth-inhibition test. The results show the AgNP had potent bactericidal activity on Staphylococcus aureus and Escherichia coli, as well as a strong antibacterial activity against gram-negative bacteria, as compared to gram-positive bacteria with a dose-dependent effect, thus providing a clinical ultrasound gel with bactericidal property for prevention of cross infections.
Chemical composition and antimicrobial activities of volatile oil extracted from Chrysanthemum morifolium Ramat
Volatile oil in Chrysanthemum morifolium Ramat (C. morifolium) was extracted by the method of water vapor distillation and its chemical components was identified by gas-chromatography coupled with mass spectrometry (GC–MS). The volatile oil are evaluated for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella enteritids, Pseudomonas aeruginosa and Bacillus subtilis. Effects of surfactant, temperature, pH and ultraviolet light on antibacterial activity stability of volatile oil were analyzed too. Total 56 compounds were identified in C. morifolium volatile oil. The main constituents in C. morifolium volatile oil were monoterpenes and sesquiterpenes compounds, including hydrocarbons, esters, aldehydes, ketones, phenols and organic acids. α-curcumene was the most abundant volatile component (12.55%). The volatile oil showed promising antibacterial activity against 5 selected strains. The inhibitory effect on P. aeruginosa exhibited maximum inhibition zone diameter 20.43 mm, and E. coli showed 12.29 mm. The volatile oil treated with surfactant Tween 20 showed the strongest antibacterial activity, followed by Tween 80 and the SDS lowest, which showed the lowest. pH also had different effect on antibacterial activity stability of the C. morifolium volatile oil. No significant difference effect on antibacterial activity stability of volatile oil was observed with temperature and UV treatment.
Synthesis, Characteristics, and Effect of Zinc Oxide and Silver Nanoparticles on the In Vitro Regeneration and Biochemical Profile of Chrysanthemum Adventitious Shoots
Studies on nanoparticles’ effects on plants are relevant for horticulture. This study aimed to test the influence of zinc oxide submicron particles (ZnO SMPs), zinc oxide nanoparticles (ZnO NPs), and zinc oxide nanoparticles combined with silver nanoparticles (ZnO+1%Ag NPs) applied at 100 and 500 mg·L−1 on the regeneration and biochemical activity of adventitious shoots in Chrysanthemum × morifolium (Ramat.) Hemsl. ‘UTP Burgundy Gold’ and ‘UTP Pinky Gold’. The original microwave solvothermal synthesis and characteristics of the ZnO samples were described. Internodes were cultured on the MS medium with 0.6 mg∙L−1 6-benzylaminopurine (BAP) and 2 mg∙L−1 indole-3-acetic acid (IAA). In ‘UTP Burgundy Gold’, the highest shoot regeneration efficiency was obtained for 100 mg·L−1 ZnO SMPs and 500 mg·L−1 ZnO NPs treatments (6.50 and 10.33 shoots per explant, respectively). These shoots had high or moderate chlorophyll and carotenoid contents. In ‘UTP Pinky Gold’, the highest shoot number was produced in the control (12.92), for 500 mg·L−1 ZnO SMPs (12.08) and 500 mg·L−1 ZnO NPs (10.42). These shoots had increased chlorophyll (a+b)-to-carotenoid ratios. In ‘UTP Pinky Gold’, the ZnO SMPs and ZnO NPs affected the anthocyanins biosynthesis, whereas ZnO + 1%Ag NPs decreased the phenolics accumulation. These results are important for the improvement of chrysanthemum micropropagation.
Plasma Lipidomics Reveals Insights into Anti-Obesity Effect of Chrysanthemum morifolium Ramat Leaves and Its Constituent Luteolin in High-Fat Diet-Induced Dyslipidemic Mice
The Chrysanthemum morifolium Ramat (CM) is widely used as a traditional medicine and herbal tea by the Asian population for its health benefits related to obesity. However, compared to the flowers of CM, detailed mechanisms underlying the beneficial effects of its leaves on obesity and dyslipidemia have not yet been elucidated. Therefore, to investigate the lipidomic biomarkers responsible for the pharmacological effects of CM leaf extract (CLE) in plasma of mice fed a high-fat diet (HFD), the plasma of mice fed a normal diet (ND), HFD, HFD plus CLE 1.5% diet, and HFD plus luteolin 0.003% diet (LU) for 16 weeks were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with multivariate analysis. In our analysis, the ND, HFD, CLE, and LU groups were clearly differentiated by partial least-squares discriminant analysis (PLS-DA) score plots. The major metabolites contributing to this differentiation were cholesteryl esters (CEs), lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), ceramides (CERs), and sphingomyelins (SMs). The levels of plasma CEs, LPCs, PCs, SMs, and CERs were significantly increased in the HFD group compared to those in the ND group, and levels of these lipids recovered to normal after administration of CLE or LU. Furthermore, changes in hepatic mRNA expression levels involved in the Kennedy pathway and sphingolipid biosynthesis were also suppressed by treatment with CLE or LU. In conclusion, this study examined the beneficial effects of CLE and LU on obesity and dyslipidemia, which were demonstrated as reduced synthesis of lipotoxic intermediates. These results may provide valuable insights towards evaluating the therapeutic effects of CLE and LU and understanding obesity-related diseases.
Highly divergent isolates of chrysanthemum virus B and chrysanthemum virus R infecting chrysanthemum in Russia
Chrysanthemum is a popular ornamental and medicinal plant that suffers from many viruses and viroids. Among them, chrysanthemum virus B (CVB, genus , family ) is widespread in all chrysanthemum-growing regions. Another carlavirus, chrysanthemum virus R (CVR), has been recently discovered in China. Information about chrysanthemum viruses in Russia is very scarce. The objective of this work was to study the prevalence and genetic diversity of CVB and CVR in Russia. We surveyed the chrysanthemum ( Ramat.) germplasm collection in the Nikita Botanical Gardens, Yalta, Russia. To detect CVB and CVR, we used RT-PCR with virus-specific primers. To reveal the complete genome sequences of CVB and CVR isolates, metatransciptomic analysis of the cultivars Ribonette, Fiji Yellow, and Golden Standard plants, naturally co-infected with CVB and CVR, was performed using Illumina high-throughput sequencing. The recombination detection tool (RDP4) was employed to search for recombination in assembled genomes. A total of 90 plants of 23 local and introduced chrysanthemum cultivars were surveyed. From these, 58 and 43% plants tested positive for CVB and CVR, respectively. RNA-Seq analysis confirmed the presence of CVB and CVR, and revealed tomato aspermy virus in each of the three transcriptomes. Six near complete genomes of CVB and CVR were assembled from the RNA-Seq reads. The CVR isolate X21 from the cultivar Golden Standard was 92% identical to the Chinese isolate BJ. In contrast, genomes of the CVR isolates X6 and X13 (from the cultivars Ribonette and Fiji Yellow, respectively), were only 76% to 77% identical to the X21 and BJ, and shared 95% identity to one another and appear to represent a divergent group of the CVR. Two distantly related CVB isolates, GS1 and GS2, were found in a plant of the cultivar Golden Standard. Their genomes shared from 82% to 87% identity to each other and the CVB genome from the cultivar Fiji Yellow (isolate FY), as well as to CVB isolates from Japan and China. A recombination event of 3,720 nucleotides long was predicted in the replicase gene of the FY genome. It was supported by seven algorithms implemented in RDP4 with statistically significant -values. The inferred major parent was the Indian isolate Uttar Pradesh (AM765837), and minor parent was unknown. We found a wide distribution of CVB and CVR in the chrysanthemum germplasm collection of the Nikita Botanical Gardens, which is the largest in Russia. Six near complete genomes of CVR and CVB isolates from Russia were assembled and characterized for the first time. This is the first report of CVR in Russia and outside of China thus expanding the information on the geographical distribution of the virus. Highly divergent CVB and CVR isolates have been identified that contributes the better understanding the genetic diversity of these viruses.
UV RESISTANCE LOCUS 8 From Chrysanthemum morifolium Ramat (CmUVR8) Plays Important Roles in UV-B Signal Transduction and UV-B-Induced Accumulation of Flavonoids
UV Resistance Locus 8 (UVR8), an ultraviolet-B (UV-B; 280-315 nm) photoreceptor, participates in the regulation of various plant growth and developmental processes. UV-B radiation is an important factor enhancing the production of active components in medicinal plants. To-date, however, studies on UV-B photoreceptors have largely focused on , and the functions of UVR8 in medicinal plants are still largely unknown. In the present study, a homolog of UVR8, CmUVR8, was isolated from Ramat, and its structure and function were analyzed in detail. Protein sequence analysis showed that CmUVR8 contained nine conserved regulators of chromosome condensation 1 repeats, seven conserved bladed propellers, one C27 region, three \"GWRHT\" motifs and several crucial amino acid residues (such as 14 Trps and 2 Args), similar to AtUVR8. 3-D structural analysis of CmUVR8 indicated that its structure was similar to AtUVR8. Heterologous expression of could rescued the deficient phenotype of , a mutant of in , indicating the role of CmUVR8 in the regulation of hypocotyl elongation and gene expression under UV-B irradiation. Moreover, CmUVR8 regulates UV-B-induced expression of four flavonoids biosynthesis-related genes and the UV-B-induced accumulation of flavonoids. Furthermore, the interaction between CmUVR8 and CmCOP1 were confirmed using a yeast two-hybrid assay. These results indicated that CmUVR8 plays important roles in UV-B signal transduction and the UV-B-induced accumulation of flavonoids, as a counterpart of AtUVR8.