Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
197
result(s) for
"Cichorium intybus - chemistry"
Sort by:
The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review
by
Gutowska, Izabela
,
Jakubczyk, Karolina
,
Janda, Katarzyna
in
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
,
Antifungal Agents - chemistry
2021
Natural products are gaining more interest recently, much of which focuses on those derived from medicinal plants. The common chicory (Cichorium intybus L.), of the Astraceae family, is a prime example of this trend. It has been proven to be a feasible source of biologically relevant elements (K, Fe, Ca), vitamins (A, B1, B2, C) as well as bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), which exert potent pro-health effects on the human organism. It displays choleretic and digestion-promoting, as well as appetite-increasing, anti-inflammatory and antibacterial action, all owing to its varied phytochemical composition. Hence, chicory is used most often to treat gastrointestinal disorders. Chicory was among the plants with potential against SARS-CoV-2, too. To this and other ends, roots, herb, flowers and leaves are used. Apart from its phytochemical applications, chicory is also used in gastronomy as a coffee substitute, food or drink additive. The aim of this paper is to present, in the light of the recent literature, the chemical composition and properties of chicory.
Journal Article
Chemical Composition and Nutritive Benefits of Chicory (Cichorium intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement
by
Nwafor, Ifeoma Chinyelu
,
Achilonu, Matthew C.
,
Shale, Karabo
in
Acids
,
Animal Feed - standards
,
Animals
2017
Chicory is a perennial plant grown in different parts of the world, used as forage for livestock, as folklore remedies, or as a vegetable addition in human diets. There are several varieties of the chicory plant, known differently globally due to its numerous medicinal, culinary, and nutritional qualities. Most parts of the plant contain a potpourri of nutrients ranging within carbohydrates, proteins, vitamins, minerals, soluble fiber, trace elements, and bioactive phenolic compounds, which are responsible for the various nutritive, prophylactic, and therapeutic qualities of chicory. Inulin, coumarins, tannins, monomeric flavonoids, and sesquiterpene lactones are some of the major phytocompounds mostly found in chicory plants. The health-promoting activities attributed to chicory comprise, among others, anti-inflammatory, anticarcinogenic, antiviral, antibacterial, antimutagenic, antifungal, anthelmintic, immune-stimulating, and antihepatotoxic and its antioxidative qualities. As a versatile plant, chicory’s chemical composition and use as a suitable livestock feed supplement or as an alternative feed ingredient (AFI) are thus reviewed.
Journal Article
Microgreens Production with Low Potassium Content for Patients with Impaired Kidney Function
by
Santamaria, Pietro
,
Castellino, Maria
,
Leoni, Beniamino
in
antioxidant activity
,
antioxidants
,
Antioxidants - analysis
2018
Chronic kidney disease represents a global problem together with other so-called ‘lifestyle-related diseases’. Unlike the healthy population, for the patients with impaired kidney function, it is of course prudent to recommend a restriction of high-potassium foods. Thus, it is suggested to limit the consumption of vegetables, because they generally contain high concentrations of potassium. At the same time, a lower consumption of vegetables reduces the intake of healthy compounds such as vitamins, fibers, and antioxidants, which also reduces the vegetables’ potential benefit in chronic kidney disease patients. Microgreens are an emerging class of specialty crop that represent a nutritious and refined food. In this study, for the first time, some chicory (local variety ‘Molfetta’ and cultivar ‘Italico a costa rossa’) and lettuce (cultivar ‘Bionda da taglio’) genotypes were grown using a hydroponic system with different potassium (K) levels (0, 29.1, 58.4, and 117 mg L−1) in order to produce microgreens with a low potassium content. The crop performances, cations content, proximate composition, and antioxidant activity were analyzed. Independent of the genotype, the K content in the microgreens was successfully reduced using a nutrient solution (NS), without K or with 29.1 mg K L−1, which supplied between 103 and 129 mg of K 100 g−1 FW (about 7.7–8.6% of the K daily intake that was recommended for the patients that were affected by chronic kidney disease). Whereas, 100 g of microgreens that were grown by using an NS with 58.4 or 117 mg K L−1 supply between 225 and 250 mg of K (about 15.8–16.5% of the K daily intake recommended for patients affected by chronic kidney disease). No differences were observed in terms of the shoot height, dry matter, proximate composition, and visual quality. A slightly lower yield was observed using an NS with a K concentration <58.4 mg L−1. These results suggest that by using an NS without K or with low K concentrations, it is possible to obtain a useful reduction of K in microgreens, without negatively affecting the quality. Unlike conventional vegetables, the microgreens that were produced in the present study could reduce the potassium intake in patients with impaired kidney function who were accustomed to eating vegetable-based dishes.
Journal Article
Discovery of hyde C1 a broad spectrum antimicrobial peptide derived from chicory
by
Seyedjavadi, Sima Sadat
,
Goudarzi, Mehdi
,
Afshari, Samira Ghaderi
in
631/326
,
631/337
,
Amino acids
2025
Antimicrobial peptides (AMPs) are emerging as promising alternatives to traditional antibiotics against multidrug-resistant (MDR) bacteria. In this study, we isolated and characterized a novel AMP, named Hyde C1, from the chicory plant (
Cichorium intybus
L.). Hyde C1 was purified using reverse-phase high-performance liquid chromatography (RP-HPLC) and determined to have a molecular weight of 3686.4 Da. It exhibits strong antibacterial activity against both Gram-positive (
S. aureus
ATCC 29213) and Gram-negative (
E. coli
ATCC 25922,
P. aeruginosa
ATCC 27853,
A. baumannii
ATCC 19606) bacteria, with minimum inhibitory concentrations (MICs) ranging from 2 to 16 µg/mL. Hyde C1 disrupts bacterial membranes, as evidenced by increased permeability, membrane depolarization, and scanning electron microscopy. Bioinformatic analysis revealed its amphipathic α-helical structure, with a high hydrophobic ratio (61%) and a net positive charge (+ 6), supporting its bactericidal mechanism. The peptide also demonstrated high stability under various pH, temperature, and salt conditions, along with low hemolytic and cytotoxic effects. These properties suggest that Hyde C1 is a strong candidate for development as a novel antimicrobial agent.
Journal Article
Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide
by
Gould, Trevor
,
Carlson, Justin
,
Erickson, Jennifer
in
Actinobacteria - isolation & purification
,
Adult
,
Bacteroidetes - isolation & purification
2017
Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat β-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 μmol/mL) compared to inulin, WholeFiber and XOS samples (p < 0.03). Oatwell’s effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase in the genus Bifidobacterium after 24 h of fermentation (0 h:0.67 OTUs (operational taxonomic unit); 24 h:5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent with findings in clinical studies. All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.
Journal Article
Towards understanding vacuolar antioxidant mechanisms: a role for fructans?
by
Vergauwen, Rudy
,
Van den Ende, Wim
,
Moglia, Andrea
in
antioxidant activity
,
Antioxidants
,
Antioxidants - chemistry
2013
Recent in vitro, in vivo, and theoretical experiments strongly suggest that sugar-(like) molecules counteract oxidative stress by acting as genuine reactive oxygen species (ROS) scavengers. A concept was proposed to include the vacuole as a part of the cellular antioxidant network. According to this view, sugars and sugar-like vacuolar compounds work in concert with vacuolar phenolic compounds and the ‘classic’ cytosolic antioxidant mechanisms. Among the biologically relevant ROS (H2O2, O2·–, and ·OH), hydroxyl radicals are the most reactive and dangerous species since there are no enzymatic systems known to neutralize them in any living beings. Therefore, it is important to study in more detail the radical reactions between ·OH and different biomolecules, including sugars. Here, Fenton reactions were used to compare the ·OH-scavenging capacities of a range of natural vacuolar compounds to establish relationships between antioxidant capacity and chemical structure and to unravel the mechanisms of ·OH–carbohydrate reactions. The in vitro work on the ·OH-scavenging capacity of sugars and phenolic compounds revealed a correlation between structure and ·OH-scavenging capacity. The number and position of the C=C type of linkages in phenolic compounds greatly influence antioxidant properties. Importantly, the splitting of disaccharides and oligosaccharides emerged as a predominant outcome of the ·OH–carbohydrate interaction. Moreover, non-enzymatic synthesis of new fructan oligosaccharides was found starting from 1-kestotriose. Based on these and previous findings, a working model is proposed describing the putative radical reactions involving fructans and secondary metabolites at the inner side of the tonoplast and in the vacuolar lumen.
Journal Article
α-Glucosidase Inhibition-Guided Network Pharmacology and Molecular Docking Reveal the Antidiabetic Potential of Cichorium intybus as a Functional Food
by
Shah, Abdul Bari
,
Shang, Xiaofei
,
Baiseitova, Aizhamal
in
alpha-Glucosidases - chemistry
,
alpha-Glucosidases - metabolism
,
Antidiabetics
2025
Cichorium intybus, commonly known as chicory, is acknowledged as a substitute for coffee and is widely utilized in medicinal applications to treat various ailments. Chicory extract is commonly used in the management of diabetes; however, the specific bioactive components remain unidentified. The present study displayed the antidiabetic potential of chicory using a comprehensive approach integrating in vitro, network pharmacology, and in silico techniques. The methanolic extract demonstrated significant α-glucosidase inhibitory activity in the initial experiment, indicating potential for the management of postprandial hyperglycemia. Based on this, chicory’s major metabolites were identified and examined for their interactions with (type 2 diabetes) T2D targets using network pharmacology. The core genes and pathways involved in the disease were mapped to understand the multitarget mechanisms of the extract. A molecular docking study validated the binding affinity and interactions of leading bioactive compounds with T2D protein targets. The findings indicate that chicory metabolites may serve as promising candidates for the development of natural antidiabetic agents.
Journal Article
Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review
by
Williams, Andrew R.
,
Valente, Angela H.
,
Thamsborg, Stig M.
in
Animal Feed - analysis
,
Animal products
,
Animals
2018
Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal’s diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (
Cichorium intybus
) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous
in vivo
trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (≥ 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent
in vitro
studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed.
Journal Article
Cichorium intybus L. Extract Suppresses Experimental Gout by Inhibiting the NF-κB and NLRP3 Signaling Pathways
by
Lin, Zhijian
,
Yang, Ting
,
Jiang, Zhuoxi
in
Animals
,
Ankle
,
Anti-Inflammatory Agents - therapeutic use
2019
Background: The production and maturation of interleukin (IL)-1β, regulated by the NF-κB and NLRP3 signaling pathways, lie at the core of gout. This study aimed to evaluate the antigout effect of Cichorium intybus L. (also known as chicory) in vivo and in vitro. Methods: A gout animal model was established with monosodium urate (MSU) crystal injections. Rats were orally administered with chicory extract or colchicine. Levels of ankle edema, inflammatory activity, and IL-1β release were observed. Several essential targets of the NF-κB and NLRP3 signaling pathways were detected. Primary macrophages were isolated to verify the antigout mechanism of chicory extract as well as chicoric acid in vitro. Results: Improvements of swelling degree, inflammatory activity, and histopathological lesion in MSU-injected ankles were observed in the treatment with chicory extract. Further, the chicory extract significantly decreased IL-1β release by suppressing the NF-κB and NLRP3 signaling pathways in gout rats. Similar to the in vivo results, IL-1β release was also inhibited by chicory extract and chicoric acid, a specific effective compound in chicory, through the NF-κB and NLRP3 signaling pathways. Conclusion: This study suggests that chicory extract and chicoric acid may be used as promising therapeutic agents against gout by inhibiting the NF-κB and NLRP3 signaling pathways.
Journal Article
Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects
by
Alyhya, Nouf Abdulaziz
,
Ullah, Riaz
,
Rennert, Robert
in
Anthelmintics
,
anthraquinone
,
Anthraquinones - isolation & purification
2020
Cichorium intybus L., (chicory) is employed in various traditional medicines to treat a wide range of diseases and disorders. In the current investigation, two new naphthalane derivatives viz., cichorins D (1) and E (2), along with one new anthraquinone cichorin F (3), were isolated from Cichorium intybus. In addition, three previously reported compounds viz., β-sitosterol (4), β-sitosterol β-glucopyranoside (5), and stigmasterol (6) were also isolated from Cichorium intybus. Their structures were established via extensive spectroscopic data, including 1D (1H and 13C) and 2D NMR (COSY, HSQC and HMBC), and ESIMS. Cichorin E (2) has a weak cytotoxic effect on breast cancer cells (MDA-MB-468: IC50: 85.9 µM) and Ewing’s sarcoma cells (SK-N-MC: IC50: 71.1 µM); cichorin F (3) also illustrated weak cytotoxic effects on breast cancer cells (MDA-MB-468: IC50: 41.0 µM and MDA-MB-231: IC50: 45.6 µM), and SK-N-MC cells (IC50: 71.9 µM). Moreover compounds 1–3 did not show any promising anthelmintic effects.
Journal Article