Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
388
result(s) for
"Claudins - chemistry"
Sort by:
Claudin-23 reshapes epithelial tight junction architecture to regulate barrier function
2023
Claudin family tight junction proteins form charge- and size-selective paracellular channels that regulate epithelial barrier function. In the gastrointestinal tract, barrier heterogeneity is attributed to differential claudin expression. Here, we show that claudin-23 (CLDN23) is enriched in luminal intestinal epithelial cells where it strengthens the epithelial barrier. Complementary approaches reveal that CLDN23 regulates paracellular ion and macromolecule permeability by associating with CLDN3 and CLDN4 and regulating their distribution in tight junctions. Computational modeling suggests that CLDN23 forms heteromeric and heterotypic complexes with CLDN3 and CLDN4 that have unique pore architecture and overall net charge. These computational simulation analyses further suggest that pore properties are interaction-dependent, since differently organized complexes with the same claudin stoichiometry form pores with unique architecture. Our findings provide insight into tight junction organization and propose a model whereby different claudins combine to form multiple distinct complexes that modify epithelial barrier function by altering tight junction structure.
Claudin family proteins are important for regulating epithelial barrier function. Here the authors show that claudin-23 controls paracellular flux by combining with other claudins to alter tight junction architecture and permeability.
Journal Article
Tight junction channel regulation by interclaudin interference
2022
Tight junctions form selectively permeable seals across the paracellular space. Both barrier function and selective permeability have been attributed to members of the claudin protein family, which can be categorized as pore-forming or barrier-forming. Here, we show that claudin-4, a prototypic barrier-forming claudin, reduces paracellular permeability by a previously unrecognized mechanism. Claudin-4 knockout or overexpression has minimal effects on tight junction permeability in the absence of pore-forming claudins. However, claudin-4 selectively inhibits flux across cation channels formed by claudins 2 or 15. Claudin-4-induced loss of claudin channel function is accompanied by reduced anchoring and subsequent endocytosis of pore-forming claudins. Analyses in nonepithelial cells show that claudin-4, which is incapable of independent polymerization, disrupts polymeric strands and higher order meshworks formed by claudins 2, 7, 15, and 19. This process of interclaudin interference, in which one claudin disrupts higher order structures and channels formed by a different claudin, represents a previously unrecognized mechanism of barrier regulation.
Tight junctions are formed by claudin proteins that can be classified as pore- or barrier-forming. Here, Shashikanth et al. report a third function, termed interclaudin interference, in which one claudin inhibits pore function of another claudin by disrupting its polymeric complexes.
Journal Article
Claudin-9 structures reveal mechanism for toxin-induced gut barrier breakdown
2019
The human pathogenic bacterium Clostridium perfringens secretes an enterotoxin (CpE) that targets claudins through its C-terminal receptor-binding domain (cCpE). Isoform-specific binding by CpE causes dissociation of claudins and tight junctions (TJs), resulting in cytotoxicity and breakdown of the gut epithelial barrier. Here, we present crystal structures of human claudin-9 (hCLDN-9) in complex with cCpE at 3.2 and 3.3 Å. We show that hCLDN-9 is a high-affinity CpE receptor and that hCLDN-9–expressing cells undergo cell death when treated with CpE but not cCpE, which lacks its cytotoxic domain. Structures reveal cCpE-induced alterations to 2 epitopes known to enable claudin self-assembly and expose high-affinity interactions between hCLDN-9 and cCpE that explain isoform-specific recognition. These findings elucidate the molecular bases for hCLDN-9 selective ion permeability and binding by CpE, and provide mechanisms for how CpE disrupts gut homeostasis by dissociating claudins and TJs to affect epithelial adhesion and intercellular transport.
Journal Article
Elucidating the principles of the molecular organization of heteropolymeric tight junction strands
by
Rahn, Hans-Peter
,
Fritzsche, Susanne
,
Walter, Maria
in
Biochemistry
,
Biomedical and Life Sciences
,
Biomedicine
2011
Paracellular barrier properties of tissues are mainly determined by the composition of claudin heteropolymers. To analyze the molecular organization of tight junctions (TJ), we investigated the ability of claudins (Cld) to form homo- and heteromers. Cld1, -2, -3, -5, and -12 expressed in cerebral barriers were investigated. TJ-strands were reconstituted by claudin-transfection of HEK293-cells.
cis
-Interactions and/or spatial proximity were analyzed by fluorescence resonance energy transfer inside and outside of strands and ranked: Cld5/Cld5 > Cld5/Cld1 > Cld3/Cld1 > Cld3/Cld3 > Cld3/Cld5, no Cld3/Cld2. Classic Cld1, -3, and -5 but not non-classic Cld12 showed homophilic
trans
-interaction. Freeze-fracture electron microscopy revealed that, in contrast to classic claudins, YFP-tagged Cld12 does not form homopolymers. Heterophilic
trans
-interactions were analyzed in cocultures of differently monotransfected cells.
trans
-Interaction of Cld3/Cld5 was less pronounced than that of Cld3/Cld1, Cld5/Cld1, Cld5/Cld5 or Cld3/Cld3. The barrier function of reconstituted TJ-strands was demonstrated by a novel imaging assay. A model of the molecular organization of TJ was generated.
Journal Article
Crystal Structure of a Claudin Provides Insight into the Architecture of Tight Junctions
by
Nureki, Osamu
,
Yamazaki, Yuji
,
Dohmae, Naoshi
in
Adhesion
,
Amino Acid Motifs
,
Amino Acid Sequence
2014
Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic β-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.
Journal Article
Exploring claudin proteins: from sequence motifs to their impact on tight junction-mediated signaling pathways
by
Bao, Lingling
,
Yang, Siqi
,
Zhao, Wenhua
in
Amino Acid Motifs
,
Amino Acid Sequence
,
Amino acids
2025
Claudin (CLDN) proteins are extensively studied due to their critical role in maintaining tissue barriers and cell polarity. However, significant gaps remain in understanding the functional mechanisms of their sequence motifs and the molecular mechanisms of their interactions with other tight junction proteins
.
This review systematically examines the multifunctional properties of the CLDN protein family from the perspectives of sequence and structure. During evolution, CLDN family members have developed highly conserved structural features, particularly key conserved sites within the first extracellular loop (ECL1) and the C-terminal PDZ-binding domain, which play a central role in regulating the barrier function of tight junctions, ion selectivity, and protein–protein interactions. Furthermore, the distribution pattern of acidic and basic amino acids in ECL1 has been shown to directly determine ion selectivity and paracellular permeability. Meanwhile, the assembly and functional stability of tight junctions are precisely regulated by the C-terminal PDZ-binding domain through its interactions with the ZO protein family. Additionally, the study further elucidates how CLDN proteins modulate critical signaling pathways governing cellular proliferation, survival, and permeability, thereby participating in diverse physiological and pathological processes. These insights have deepened the understanding of the functional diversity of CLDN proteins and provided a new theoretical basis for developing disease diagnostic markers and designing targeted treatment strategies based on CLDN proteins.
Journal Article
Structure of transmembrane AMPA receptor regulatory protein subunit γ2
by
Koylass, Nicholas
,
Huganir, Richard L.
,
Hale, W. Dylan
in
101/28
,
631/45/269/1149
,
631/535/1258/1259
2025
Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. With cryo-electron microscopy (cryo-EM) we reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å, which points to structural diversity among TARPs. Our data reveals critical motifs that distinguish TARPs from claudins and define how sequence variations within TARPs differentiate subfamilies and their regulation of AMPARs.
TARPs are tetraspanins that are claudin-like but regulate glutamate receptors. Here, the moieties that define TARP function and distinguish them from claudins are uncovered through cryo-EM, structure prediction, and electrophysiology.
Journal Article
Tight junction CLDN2 gene is a direct target of the vitamin D receptor
2015
The breakdown of the intestinal barrier is a common manifestation of many diseases. Recent evidence suggests that vitamin D and its receptor VDR may regulate intestinal barrier function. Claudin-2 is a tight junction protein that mediates paracellular water transport in intestinal epithelia, rendering them “leaky”. Using whole body VDR
-/-
mice, intestinal epithelial VDR conditional knockout (VDR
ΔIEC
) mice and cultured human intestinal epithelial cells, we demonstrate here that the
CLDN2
gene is a direct target of the transcription factor VDR. The Caudal-Related Homeobox (Cdx) protein family is a group of the transcription factor proteins which bind to DNA to regulate the expression of genes. Our data showed that VDR-enhances Claudin-2 promoter activity in a Cdx1 binding site-dependent manner. We further identify a functional vitamin D response element (VDRE) 5΄-AGATAACAAAGGTCA-3΄ in the Cdx1 site of the Claudin-2 promoter. It is a VDRE required for the regulation of Claudin-2 by vitamin D. Absence of VDR decreased Claudin-2 expression by abolishing VDR/promoter binding.
In vivo
, VDR deletion in intestinal epithelial cells led to significant decreased Claudin-2 in VDR
-/-
and VDR
ΔIEC
mice. The current study reveals an important and novel mechanism for VDR by regulation of epithelial barriers.
Journal Article
Multiplex epithelium dysfunction due to CLDN10 mutation: the HELIX syndrome
by
Maroun, Rachid C
,
Taha, Rowaida Z
,
Leclerc-Mercier, Stéphanie
in
631/208/2489/144
,
631/208/737
,
631/45/612/1237
2018
Purpose
We aimed to identify the genetic cause to a clinical syndrome encompassing hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX syndrome), and to comprehensively delineate the phenotype.
Methods
We performed homozygosity mapping, whole-genome sequencing, gene sequencing, expression studies, functional tests, protein bioinformatics, and histological characterization in two unrelated families with HELIX syndrome.
Results
We identified biallelic missense mutations (c.386C>T, p.S131L and c.2T>C, p.M1T) in
CLDN10B
in six patients from two unrelated families.
CLDN10B
encodes Claudin-10b, an integral tight junction (TJ) membrane-spanning protein expressed in the kidney, skin, and salivary glands. All patients had hypohidrosis, renal loss of NaCl with secondary hyperaldosteronism and hypokalemia, as well as hypolacrymia, ichthyosis, xerostomia, and severe enamel wear. Functional testing revealed that patients had a decreased NaCl absorption in the thick ascending limb of the loop of Henle and a severely decreased secretion of saliva. Both mutations resulted in reduced or absent Claudin-10 at the plasma membrane of epithelial cells.
Conclusion
CLDN10
mutations cause a dysfunction in TJs in several tissues and, subsequently, abnormalities in renal ion transport, ectodermal gland homeostasis, and epidermal integrity.
Journal Article
Stochastic palmitoylation of accessible cysteines in membrane proteins revealed by native mass spectrometry
by
Schouten, Arie
,
Heck, Albert J. R.
,
Granneman, Joke
in
631/1647/296
,
631/45/535
,
631/45/612/1237
2017
Palmitoylation affects membrane partitioning, trafficking and activities of membrane proteins. However, how specificity of palmitoylation and multiple palmitoylations in membrane proteins are determined is not well understood. Here, we profile palmitoylation states of three human claudins, human CD20 and cysteine-engineered prokaryotic KcsA and bacteriorhodopsin by native mass spectrometry. Cysteine scanning of claudin-3, KcsA, and bacteriorhodopsin shows that palmitoylation is independent of a sequence motif. Palmitoylations are observed for cysteines exposed on the protein surface and situated up to 8 Å into the inner leaflet of the membrane. Palmitoylation on multiple sites in claudin-3 and CD20 occurs stochastically, giving rise to a distribution of palmitoylated membrane-protein isoforms. Non-native sites in claudin-3 indicate that membrane-protein function imposed evolutionary restraints on native palmitoylation sites. These results suggest a generic, stochastic membrane-protein palmitoylation process that is determined by the accessibility of palmitoyl-acyl transferases to cysteines on membrane-embedded proteins, and not by a preferred substrate-sequence motif.
Cysteine palmitoylation affects the localization and function of membrane proteins, but its stoichiometry and specificity are not well understood. Here, the authors show that palmitoylation is a stochastic process that depends on the accessibility of cysteines rather than a defined substrate motif.
Journal Article