Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,493,775 result(s) for "Clinical s"
Sort by:
Evidence-based clinical supervision
Evidence-Based Clinical Supervision critiques and summarises the best available psychological evidence relating to clinical supervision, clarifying the key principles, setting out the related practice guidelines and specifying the research and practice implications. A best-practice guide to clinical supervision, an approach used across psychotherapy and health services where professionals meet regularly with each other to discuss casework and training issues Summarises the best available clinical evidence relating to clinical supervision, and relates this information to key principles with a strong applied focus, drawing out practice guidelines and implications Aims to motivate health professionals to practice supervision with greater enthusiasm and proficiency Represents the culmination of two years' intensive research on supervision and twenty years of involvement in supporting and developing supervisors
Utility of ChatGPT in Clinical Practice
ChatGPT is receiving increasing attention and has a variety of application scenarios in clinical practice. In clinical decision support, ChatGPT has been used to generate accurate differential diagnosis lists, support clinical decision-making, optimize clinical decision support, and provide insights for cancer screening decisions. In addition, ChatGPT has been used for intelligent question-answering to provide reliable information about diseases and medical queries. In terms of medical documentation, ChatGPT has proven effective in generating patient clinical letters, radiology reports, medical notes, and discharge summaries, improving efficiency and accuracy for health care providers. Future research directions include real-time monitoring and predictive analytics, precision medicine and personalized treatment, the role of ChatGPT in telemedicine and remote health care, and integration with existing health care systems. Overall, ChatGPT is a valuable tool that complements the expertise of health care providers and improves clinical decision-making and patient care. However, ChatGPT is a double-edged sword. We need to carefully consider and study the benefits and potential dangers of ChatGPT. In this viewpoint, we discuss recent advances in ChatGPT research in clinical practice and suggest possible risks and challenges of using ChatGPT in clinical practice. It will help guide and support future artificial intelligence research similar to ChatGPT in health.
Online Patient Recruitment in Clinical Trials: Systematic Review and Meta-Analysis
Recruitment for clinical trials continues to be a challenge, as patient recruitment is the single biggest cause of trial delays. Around 80% of trials fail to meet the initial enrollment target and timeline, and these delays can result in lost revenue of as much as US $8 million per day for drug developing companies. This study aimed to conduct a systematic review and meta-analysis examining the effectiveness of online recruitment of participants for clinical trials compared with traditional in-clinic/offline recruitment methods. Data on recruitment rates (the average number of patients enrolled in the study per month and per day of active recruitment) and conversion rates (the percentage of participants screened who proceed to enroll into the clinical trial), as well as study characteristics and patient demographics were collected from the included studies. Differences in online and offline recruitment rates and conversion rates were examined using random effects models. Further, a nonparametric paired Wilcoxon test was used for additional analysis on the cost-effectiveness of online patient recruitment. All data analyses were conducted in R language, and P<.05 was considered significant. In total, 3861 articles were screened for inclusion. Of these, 61 studies were included in the review, and 23 of these were further included in the meta-analysis. We found online recruitment to be significantly more effective with respect to the recruitment rate for active days of recruitment, where 100% (7/7) of the studies included had a better online recruitment rate compared with offline recruitment (incidence rate ratio [IRR] 4.17, P=.04). When examining the entire recruitment period in months we found that 52% (12/23) of the studies had a better online recruitment rate compared with the offline recruitment rate (IRR 1.11, P=.71). For cost-effectiveness, we found that online recruitment had a significantly lower cost per enrollee compared with offline recruitment (US $72 vs US $199, P=.04). Finally, we found that 69% (9/13) of studies had significantly better offline conversion rates compared with online conversion rates (risk ratio 0.8, P=.02). Targeting potential participants using online remedies is an effective approach for patient recruitment for clinical research. Online recruitment was both superior in regard to time efficiency and cost-effectiveness compared with offline recruitment. In contrast, offline recruitment outperformed online recruitment with respect to conversion rate.
Clinical Virtual Simulation in Nursing Education: Randomized Controlled Trial
In the field of health care, knowledge and clinical reasoning are key with regard to quality and confidence in decision making. The development of knowledge and clinical reasoning is influenced not only by students' intrinsic factors but also by extrinsic factors such as satisfaction with taught content, pedagogic resources and pedagogic methods, and the nature of the objectives and challenges proposed. Nowadays, professors play the role of learning facilitators rather than simple \"lecturers\" and face students as active learners who are capable of attributing individual meanings to their personal goals, challenges, and experiences to build their own knowledge over time. Innovations in health simulation technologies have led to clinical virtual simulation. Clinical virtual simulation is the recreation of reality depicted on a computer screen and involves real people operating simulated systems. It is a type of simulation that places people in a central role through their exercising of motor control skills, decision skills, and communication skills using virtual patients in a variety of clinical settings. Clinical virtual simulation can provide a pedagogical strategy and can act as a facilitator of knowledge retention, clinical reasoning, improved satisfaction with learning, and finally, improved self-efficacy. However, little is known about its effectiveness with regard to satisfaction, self-efficacy, knowledge retention, and clinical reasoning. This study aimed to evaluate the effect of clinical virtual simulation with regard to knowledge retention, clinical reasoning, self-efficacy, and satisfaction with the learning experience among nursing students. A randomized controlled trial with a pretest and 2 posttests was carried out with Portuguese nursing students (N=42). The participants, split into 2 groups, had a lesson with the same objectives and timing. The experimental group (n=21) used a case-based learning approach, with clinical virtual simulator as a resource, whereas the control group (n=21) used the same case-based learning approach, with recourse to a low-fidelity simulator and a realistic environment. The classes were conducted by the usual course lecturers. We assessed knowledge and clinical reasoning before the intervention, after the intervention, and 2 months later, with a true or false and multiple-choice knowledge test. The students' levels of learning satisfaction and self-efficacy were assessed with a Likert scale after the intervention. The experimental group made more significant improvements in knowledge after the intervention (P=.001; d=1.13) and 2 months later (P=.02; d=0.75), and it also showed higher levels of learning satisfaction (P<.001; d=1.33). We did not find statistical differences in self-efficacy perceptions (P=.9; d=0.054). The introduction of clinical virtual simulation in nursing education has the potential to improve knowledge retention and clinical reasoning in an initial stage and over time, and it increases the satisfaction with the learning experience among nursing students.