Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,631 result(s) for "Clone Cells - immunology"
Sort by:
B cells and tertiary lymphoid structures promote immunotherapy response
Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers 1 – 10 and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity 11 – 15 , although these have been less well-studied in ICB treatment 16 . A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling 17 that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter 18 ) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets. Multiomic profiling of several cohorts of patients treated with immune checkpoint blockade highlights the presence and potential role of B cells and tertiary lymphoid structures in promoting therapy response.
Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy
Extracellular deposition of amyloid-β as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer’s disease 1 , 2 . The regional progression of brain atrophy in Alzheimer’s disease highly correlates with tau accumulation but not amyloid deposition 3 – 5 , and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-β or tau pathology 6 . Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer’s disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer’s disease and primary tauopathies. A study finds T cells in areas of tau, not amyloid, pathology in Alzheimer’s disease brain and mouse models, with their presence correlating with neuronal loss and their depletion, or that of microglia, preventing neurodegeneration and cognitive decline.
SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-19 1 – 5 . The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood ( n  = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike ( S ) gene 1 . Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity. Analysis of antigen-specific B cells in lymph nodes of individuals vaccinated with BNT162b2 reveals lasting germinal centre responses, explaining the robust humoral immunity induced by SARS-CoV-2 mRNA-based vaccines.
An autoimmune stem-like CD8 T cell population drives type 1 diabetes
CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells 1 . How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, β-cell-specific CD8 T cells destroy insulin-producing β-cells. Here we followed the fate of β-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy β-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain β-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes. A population of β-cell-specific autoimmune stem-like CD8 T cells initiates and sustains β-cell destruction and disease in a mouse model of type 1 diabetes.
Long-primed germinal centres with enduring affinity maturation and clonal migration
Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (B GC ) cells that last for at least 6 months. A 186-fold increase in B GC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of B GC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding B GC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells 1 , 2 . Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous B GC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses. Using HIV Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B cells lasting at least 6 months, showing promise in regard to difficult vaccine targets.
Commonality despite exceptional diversity in the baseline human antibody repertoire
In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure 1 . The diversity of the naive antibody repertoire in humans is estimated to be at least 10 12 unique antibodies 2 . Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 10 9 , the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person—the ‘genome’ of the adaptive immune system—exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells 3 . Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire. A genetic study of the baseline human antibody repertoire, based on the circulating B cell populations of ten subjects, reveals universally shared antibody clonotypes within repertoires that are largely unique to the individual.
Human neutralizing antibodies elicited by SARS-CoV-2 infection
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention 1 – 3 . The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2) 2 , 4 – 6 . Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2. In a study of antibodies isolated from patients infected with SARS-CoV-2, antibodies that potently neutralized the virus competed with angiotensin-converting enzyme 2 for binding to the receptor-binding domain of the viral spike protein, suggesting that antibodies that disrupt this interaction could be developed to treat SARS-CoV-2 infection.
Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity
IgA + B cells expressing programmed death ligand 1 (PD-L1) and interleukin 10 accumulate in the inflamed livers of humans and mice with non-alcoholic fatty liver disease where they promote the progression to hepatocellular carcinoma by limiting the local activation of PD-1-expressing CD8 + T cells. The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA + ) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8 + T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8 + T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA + cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8 + T-lymphocyte activation as a tumour-promoting mechanism. Increased cancer risk in fatty livers Cancer progression beyond the early stages is thought to be caused in some cases by adaptive immunity, but its role remains controversial. In this study, Michael Karin and colleagues show that PD-L1-expressing IgA + B cells accumulate in the inflamed livers of humans and mice with non-alcoholic fatty liver disease. The inflammation-induced IgA + cells promote the progression to hepatocellular carcinoma by suppressing liver cytotoxic CD8 + T cells that prevent the emergence of this aggressive tumour.
Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus
Patients with systemic lupus erythematosus (SLE) experience flares of autoantibody secretion. Sanz and colleagues track the plasma cell repertoires of patients with SLE and find a sizeable polyclonal contribution by newly activated autoreactive B cells. Acute systemic lupus erythematosus (SLE) courses with surges of antibody-secreting cells (ASCs) whose origin, diversity and contribution to serum autoantibodies remain unknown. Here, deep sequencing, proteomic profiling of autoantibodies and single-cell analysis demonstrated highly diversified ASCs punctuated by clones expressing the variable heavy-chain region V H 4-34 that produced dominant serum autoantibodies. A fraction of ASC clones contained autoantibodies without mutation, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment was derived from a distinct subset of newly activated naive cells of considerable clonality that persisted in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation, with prolonged recruitment of recently activated naive B cells. Our findings shed light on the pathogenesis of SLE, help explain the benefit of agents that target B cells and should facilitate the design of future therapies.
High frequency of shared clonotypes in human B cell receptor repertoires
The human genome contains approximately 20 thousand protein-coding genes 1 , but the size of the collection of antigen receptors of the adaptive immune system that is generated by the recombination of gene segments with non-templated junctional additions (on B cells) is unknown—although it is certainly orders of magnitude larger. It has not been established whether individuals possess unique (or private) repertoires or substantial components of shared (or public) repertoires. Here we sequence recombined and expressed B cell receptor genes in several individuals to determine the size of their B cell receptor repertoires, and the extent to which these are shared between individuals. Our experiments revealed that the circulating repertoire of each individual contained between 9 and 17 million B cell clonotypes. The three individuals that we studied shared many clonotypes, including between 1 and 6% of B cell heavy-chain clonotypes shared between two subjects (0.3% of clonotypes shared by all three) and 20 to 34% of λ or κ light chains shared between two subjects (16 or 22% of λ or κ light chains, respectively, were shared by all three). Some of the B cell clonotypes had thousands of clones, or somatic variants, within the clonotype lineage. Although some of these shared lineages might be driven by exposure to common antigens, previous exposure to foreign antigens was not the only force that shaped the shared repertoires, as we also identified shared clonotypes in umbilical cord blood samples and all adult repertoires. The unexpectedly high prevalence of shared clonotypes in B cell repertoires, and identification of the sequences of these shared clonotypes, should enable better understanding of the role of B cell immune repertoires in health and disease. Many clonotypes in human B cell repertoires are shared, including between adult and umbilical cord blood repertoires, which indicates that this similarity is not driven only by exposure to common antigens.