Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
48
result(s) for
"Cloud water/phase"
Sort by:
Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean
by
Protat, Alain
,
Alexander, Simon P.
,
Bretherton, Christopher S.
in
Aerosol-cloud interaction
,
Aerosols
,
Antarctic front
2021
Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation, and radiative processes, and their interactions. Projects between 2016 and 2018 used in situ probes, radar, lidar, and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN), and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF–NCAR G-V aircraft flying north–south gradients south of Tasmania, at Macquarie Island, and on the R/V Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multilayered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of dynamics and turbulence that likely drive heterogeneity of cloud phase. Satellite retrievals confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.
Journal Article
A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone
2014
Aerosols influence cloud and precipitation development in complex ways due to myriad feedbacks at a variety of scales from individual clouds through entire storm systems. This paper describes the implementation, testing, and results of a newly modified bulk microphysical parameterization with explicit cloud droplet nucleation and ice activation by aerosols. Idealized tests and a high-resolution, convection-permitting, continental-scale, 72-h simulation with five sensitivity experiments showed that increased aerosol number concentration results in more numerous cloud droplets of overall smaller size and delays precipitation development. Furthermore, the smaller droplet sizes cause the expected increased cloud albedo effect and more subtle longwave radiation effects. Although increased aerosols generally hindered the warm-rain processes, regions of mixed-phase clouds were impacted in slightly unexpected ways with more precipitation falling north of a synoptic-scale warm front. Aerosol impacts to regions of light precipitation, less than approximately 2.5 mm h−1, were far greater than impacts to regions with higher precipitation rates. Comparisons of model forecasts with five different aerosol states versus surface precipitation measurements revealed that even a large-scale storm system with nearly a thousand observing locations did not indicate which experiment produced a more correct final forecast, indicating a need for far longer-duration simulations due to the magnitude of both model forecast error and observational uncertainty. Last, since aerosols affect cloud and precipitation phase and amount, there are resulting implications to a variety of end-user applications such as surface sensible weather and aircraft icing.
Journal Article
The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP)
2017
The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP), an updated and enhanced version of the University of Wisconsin (UWisc) cloud liquid water path (CLWP) climatology, currently provides 29 years (1988–2016) of monthly gridded (1°) oceanic CLWP information constructed using Remote Sensing Systems (RSS) intercalibrated 0.25°-resolution retrievals. Satellite sources include SSM/I, TMI, AMSR-E, WindSat, SSMIS, AMSR-2, and GMI. To mitigate spurious CLWP trends, the climatology is corrected for drifting satellite overpass times by simultaneously solving for the monthly average CLWP and the monthly mean diurnal cycle. In addition to a longer record and six additional satellite products, major enhancements relative to the UWisc climatology include updating the input to version 7 RSS retrievals, correcting for a CLWP bias (based on matchups to clear-sky MODIS scenes), and constructing a total (cloud + rain) liquid water path (TLWP) record for use in analyses of columnar liquid water in raining clouds. Because the microwave emission signal from cloud water is similar to that of precipitation-sized hydrometeors, greater uncertainty in the CLWP record is expected in regions of substantial precipitation. Therefore, the TLWP field can also be used as a quality-control screen,where uncertainty increases as the ratio of CLWP to TLWP decreases. For regions where confidence in CLWP is highest (i.e., CLWP:TLWP > 0.8), systematic differences in MAC CLWP relative to UWisc CLWP range from −15% (e.g., global oceanic stratocumulus decks) to +5%–10% (e.g., portions of the higher latitudes, storm tracks, and shallower convection regions straddling the ITCZ). The dataset is currently hosted at the Goddard Earth Sciences Data and Information Services Center.
Journal Article
Stratocumulus Clouds
2012
This paper reviews the current knowledge of the climatological, structural, and organizational aspects of stratocumulus clouds and the physical processes controlling them. More of Earth’s surface is covered by stratocumulus clouds than by any other cloud type making them extremely important for Earth’s energy balance, primarily through their reflection of solar radiation. They are generally thin clouds, typically occupying the upper few hundred meters of the planetary boundary layer (PBL), and they preferably occur in shallow PBLs that are readily coupled by turbulent mixing to the surface moisture supply. Thus, stratocumuli favor conditions of strong lower-tropospheric stability, large-scale subsidence, and a ready supply of surface moisture; therefore, they are common over the cooler regions of subtropical and midlatitude oceans where their coverage can exceed 50% in the annual mean. Convective instability in stratocumulus clouds is driven primarily by the emission of thermal infrared radiation from near the cloud tops and the resulting turbulence circulations are enhanced by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives entrainment at the top of the stratocumulus-topped boundary layer (STBL), which is stronger than it would be in the absence of cloud, and this tends to result in a deepening of the STBL over time. Many stratocumulus clouds produce some drizzle through the collision–coalescence process, but thicker clouds drizzle more readily, which can lead to changes in the dynamics of the STBL that favor increased mesoscale variability, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation formation, turbulence, and entrainment help to regulate stratocumulus. Although stratocumulus is arguably the most well-understood cloud type, it continues to challenge understanding. Indeed, recent field studies demonstrate that marine stratocumulus precipitate more strongly, and entrain less, than was previously thought, and display an organizational complexity much larger than previously imagined. Stratocumulus clouds break up as the STBL deepens and it becomes more difficult to maintain buoyant production of turbulence through the entire depth of the STBL. Stratocumulus cloud properties are sensitive to the concentration of aerosol particles and therefore anthropogenic pollution. For a given cloud thickness, polluted clouds tend to produce more numerous and smaller cloud droplets, greater cloud albedo, and drizzle suppression. In addition, cloud droplet size also affects the time scale for evaporation–entrainment interactions and sedimentation rate, which together with precipitation changes can affect turbulence and entrainment. Aerosols are themselves strongly modified by physical processes in stratocumuli, and these two-way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol–stratocumulus interactions are therefore one of the most challenging frontiers in cloud–climate research. Low-cloud feedbacks are also a leading cause of uncertainty in future climate prediction because even small changes in cloud coverage and thickness have a major impact on the radiation budget. Stratocumuli remain challenging to represent in climate models since their controlling processes occur on such small scales. A better understanding of stratocumulus dynamics, particularly entrainment processes and mesoscale variability, will be required to constrain these feedbacks. CONTENTS Introduction...2 Climatology of stratocumulus...4 Annual mean...4 Temporal variability...6 Spatial scales of organization1...0 The stratocumulus-topped boundary layer...11 Vertical structure of the STBL...11 Liquid water...14 Entrainment interfacial layer...15 Physical processes controlling stratocumulus...16 Radiative driving of stratocumulus...16 Turbulence...21 Surface fluxes...24 Entrainment...25 Precipitation...26 Microphysics...27 Cloud droplet concentration and controlling factors...27 Microphysics of precipitation formation...29 Interactions between physical processes...32 Maintenance and regulating feedbacks...32 Microphysical–macrophysical interactions...34 Interactions between the STBL and large-scale meteorology...35 Formation...36 Dissipation and transition to other cloud types...36 Summary...40
Journal Article
Long-Term Statistics of Riming in Nonconvective Clouds Derived from Ground-Based Doppler Cloud Radar Observations
2020
Riming is an efficient process of converting liquid cloud water into ice and plays an important role in the formation of precipitation in cold clouds. Due to the rapid increase in ice particle mass, riming enhances the particle’s terminal velocity, which can be detected by ground-based vertically pointing cloud radars if the effect of vertical air motions can be sufficiently mitigated. In our study, we first revisit a previously published approach to relate the radar mean Doppler velocity (MDV) to rime mass fraction (FR) using a large ground-based in situ dataset. This relation is then applied to multiyear datasets of cloud radar observations collected at four European sites covering polluted central European, clean maritime, and Arctic climatic conditions. We find that riming occurs in 1%–8% of the nonconvective ice containing clouds with median FR between 0.5 and 0.6. Both the frequency of riming and FR reveal relatively small variations for different seasons. In contrast to previous studies, which suggested enhanced riming for clean environments, our statistics indicate the opposite; however, the differences between the locations are overall small. We find a very strong relation between the frequency of riming and temperature. While riming is rare at temperatures lower than −12°C, it strongly increases toward 0°C. Previous studies found a very similar temperature dependence for the amount and droplet size of supercooled liquid water, which might be closely connected to the riming signature found in this study. In contrast to riming frequency, we find almost no temperature dependence for FR.
Journal Article
The COMBLE Campaign
by
Kosovic, Branko
,
DeMott, Paul J.
,
Xue, Lulin
in
Aerosol concentrations
,
Aerosol-cloud interaction
,
Aerosols
2022
One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over highlatitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.
Journal Article
Instantaneous Linkages between Clouds and Large-Scale Meteorology over the Southern Ocean in Observations and a Climate Model
2017
Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the midtroposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm and cold sectors of cyclones.
The observed relationships between clouds and meteorology are compared to those in the Community Atmosphere Model, version 5 (CAM5), using satellite simulators. Low clouds simulated by CAM5 are too few, are too bright, and contain too much ice. In the cold sector of cyclones, the low clouds are also too sensitive to variations in the meteorology. When CAM5 is coupled with an updated boundary layer parameterization known as Cloud Layers Unified by Binormals (CLUBB), bias in the ice content of low clouds is dramatically reduced. More generally, this study demonstrates that examining the instantaneous time scale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.
Journal Article
Combining Cloud Properties from CALIPSO, CloudSat, and MODIS for Top-of-Atmosphere (TOA) Shortwave Broadband Irradiance Computations
2022
Cloud vertical profile measurements from the CALIPSO and CloudSat active sensors are used to improve top-of-atmosphere (TOA) shortwave (SW) broadband (BB) irradiance computations. The active sensor measurements, which occasionally miss parts of the cloud columns because of the full attenuation of sensor signals, surface clutter, or insensitivity to a certain range of cloud particle sizes, are adjusted using column-integrated cloud optical depth derived from the passive MODIS sensor. Specifically, we consider two steps in generating cloud profiles from multiple sensors for irradiance computations. First, cloud extinction coefficient and cloud effective radius (CER) profiles are merged using available active and passive measurements. Second, the merged cloud extinction profiles are constrained by the MODIS visible scaled cloud optical depth, defined as a visible cloud optical depth multiplied by (1 2 asymmetry parameter), to compensate for missing cloud parts by active sensors. It is shown that the multisensor-combined cloud profiles significantly reduce positive TOA SW BB biases, relative to those with MODIS-derived cloud properties only. The improvement is more pronounced for optically thick clouds, where MODIS ice CER is largely underestimated. Within the SW BB (0.18–4 μm), the 1.04–1.90-μm spectral region is mainly affected by the CER, where both the cloud absorption and solar incoming irradiance are considerable.
Journal Article
Cloud Phase and Relative Humidity Distributions over the Southern Ocean in Austral Summer Based on In Situ Observations and CAM5 Simulations
by
Stephens, Britton B.
,
Wu, Chenglai
,
Liu, Xiaohong
in
Airborne observation
,
Aircraft
,
aircraft observations
2019
Cloud phase and relative humidity (RH) distributions at −67° to 0°C over the Southern Ocean during austral summer are compared between in situ airborne observations and global climate simulations. A scale-aware comparison is conducted using horizontally averaged observations from 0.1 to 50 km. Cloud phase frequencies, RH distributions, and liquid mass fraction are found to be less affected by horizontal resolutions than liquid and ice water content (LWC and IWC, respectively), liquid and ice number concentrations (Ncliq and Ncice, respectively), and ice supersaturation (ISS) frequency. At −10° to 0°C, observations show 27%–34% and 17%–37% of liquid and mixed phases, while simulations show 60%–70% and 3%–4%, respectively. Simulations overestimate (underestimate) LWC and Ncliq in liquid (mixed) phase, overestimate Ncice in mixed phase, underestimate IWC in ice and mixed phases, and underestimate (overestimate) liquid mass fraction below (above) −5°C, indicating that observational constraints are needed for different cloud phases. RH frequently occurs at liquid saturation in liquid and mixed phases for all datasets, yet the observed RH in ice phase can deviate from liquid saturation by up to 20%–40% at −20° to 0°C, indicating that the model assumption of liquid saturation for coexisting ice and liquid is inaccurate for low liquid mass fractions (<0.1). Simulations lack RH variability for partial cloud fractions (0.1–0.9) and underestimate (overestimate) ISS frequency for cloud fraction <0.1 (≥0.6), implying that improving RH subgrid-scale parameterizations may be a viable path to account for small-scale processes that affect RH and cloud phase heterogeneities. Two sets of simulations (nudged and free-running) show very similar results (except for ISS frequency) regardless of sample sizes, corroborating the statistical robustness of the model–observation comparisons.
Journal Article
Mechanisms of the Negative Shortwave Cloud Feedback in Middle to High Latitudes
2016
Increases in cloud optical depth and liquid water path (LWP) are robust features of global warming model simulations in high latitudes, yielding a negative shortwave cloud feedback, but the mechanisms are still uncertain. Here the importance of microphysical processes for the negative optical depth feedback is assessed by perturbing temperature in the microphysics schemes of two aquaplanet models, both of which have separate prognostic equations for liquid water and ice. It is found that most of the LWP increase with warming is caused by a suppression of ice microphysical processes in mixed-phase clouds, resulting in reduced conversion efficiencies of liquid water to ice and precipitation. Perturbing the temperature-dependent phase partitioning of convective condensate also yields a small LWP increase. Together, the perturbations in large-scale microphysics and convective condensate partitioning explain more than two-thirds of the LWP response relative to a reference case with increased SSTs, and capture all of the vertical structure of the liquid water response. In support of these findings, a very robust positive relationship between monthly mean LWP and temperature in CMIP5 models and observations is shown to exist in mixed-phase cloud regions only. In models, the historical LWP sensitivity to temperature is a good predictor of the forced global warming response poleward of about 45°, although models appear to overestimate the LWP response to warming compared to observations. The results indicate that in climate models, the suppression of ice-phase microphysical processes that deplete cloud liquid water is a key driver of the LWP increase with warming and of the associated negative shortwave cloud feedback.
Journal Article