Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
25,299 result(s) for "Clouds (Meteorology)"
Sort by:
Next time you see a cloud
\"Next Time You See a Cloud explains the science behind clouds in a way young children can understand. The book also includes activities and additional resources, as well as color photographs\"-- Provided by publisher.
Changes in the shape of cloud ice water content vertical structure due to aerosol variations
Changes in the shape of cloud ice water content vertical structure due to aerosol variations are calculated in the Tropics during 2007--2010 based upon an analysis of DARDAR ice water content (IWC) profiles for deep convective clouds. DARDAR profiles are a joint retrieval of CloudSat-CALIPSO data. Our analysis is performed for 12 separate regions over land and ocean, and carried out applying Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) fields that attempt to correct for 3D cloud adjacency effects. The 3D cloud adjacency effects have a small impact upon our calculations of aerosol-cloud indirect effects. IWC profiles are averaged for three AOD bins individually for the 12 regions. The IWC average profiles are also normalized to unity at 5 km altitude in order to study changes in the shape of the average IWC profiles as AOD increases. Derivatives of the IWC average profiles, and derivatives of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are calculated separately for each region. Means of altitude-specific probability distribution functions, which include both ocean and land IWC shape regional derivatives, are modest, near 5 %, and positive to the 2σ level between 11 and 15 km altitude.
Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: relative importance of aerosol–cloud and aerosol–radiation interactions
Biomass burning (BB) aerosols can influence regional and global climate through interactions with radiation, clouds, and precipitation. Here, we investigate the impact of BB aerosols on the energy balance and hydrological cycle over the Amazon Basin during the dry season. We performed simulations with a fully coupled meteorology–chemistry model, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), for a range of different BB emission scenarios to explore and characterize nonlinear effects and individual contributions from aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs). The ARIs of BB aerosols tend to suppress low-level liquid clouds by local warming and increased evaporation and to facilitate the formation of high-level ice clouds by enhancing updrafts and condensation at high altitudes. In contrast, the ACIs of BB aerosol particles tend to enhance the formation and lifetime of low-level liquid clouds by providing more cloud condensation nuclei (CCN) and to suppress the formation of high-level ice clouds by reducing updrafts and condensable water vapor at high altitudes (>8 km). For scenarios representing the lower and upper limits of BB emission estimates for recent years (2002–2016), we obtained total regional BB aerosol radiative forcings of −0.2 and 1.5 W m−2, respectively, showing that the influence of BB aerosols on the regional energy balance can range from modest cooling to strong warming. We find that ACIs dominate at low BB emission rates and low aerosol optical depth (AOD), leading to an increased cloud liquid water path (LWP) and negative radiative forcing, whereas ARIs dominate at high BB emission rates and high AOD, leading to a reduction of LWP and positive radiative forcing. In all scenarios, BB aerosols led to a decrease in the frequency of occurrence and rate of precipitation, caused primarily by ACI effects at low aerosol loading and by ARI effects at high aerosol loading. The dependence of precipitation reduction on BB aerosol loading is greater in a strong convective regime than under weakly convective conditions. Overall, our results show that ACIs tend to saturate at high aerosol loading, whereas the strength of ARIs continues to increase and plays a more important role in highly polluted episodes and regions. This should hold not only for BB aerosols over the Amazon, but also for other light-absorbing aerosols such as fossil fuel combustion aerosols in industrialized and densely populated areas. The importance of ARIs at high aerosol loading highlights the need for accurately characterizing aerosol optical properties in the investigation of aerosol effects on clouds, precipitation, and climate.
Constraining the aerosol influence on cloud liquid water path
The impact of aerosols on cloud properties is one of the largest uncertainties in the anthropogenic radiative forcing of the climate. Significant progress has been made in constraining this forcing using observations, but uncertainty remains, particularly in the magnitude of cloud rapid adjustments to aerosol perturbations. Cloud liquid water path (LWP) is the leading control on liquid-cloud albedo, making it important to observationally constrain the aerosol impact on LWP. Previous modelling and observational studies have shown that multiple processes play a role in determining the LWP response to aerosol perturbations, but that the aerosol effect can be difficult to isolate. Following previous studies using mediating variables, this work investigates use of the relationship between cloud droplet number concentration (Nd) and LWP for constraining the role of aerosols. Using joint-probability histograms to account for the non-linear relationship, this work finds a relationship that is broadly consistent with previous studies. There is significant geographical variation in the relationship, partly due to role of meteorological factors (particularly relative humidity). The Nd–LWP relationship is negative in the majority of regions, suggesting that aerosol-induced LWP reductions could offset a significant fraction of the instantaneous radiative forcing from aerosol–cloud interactions (RFaci). However, variations in the Nd–LWP relationship in response to volcanic and shipping aerosol perturbations indicate that the Nd–LWP relationship overestimates the causal Nd impact on LWP due to the role of confounding factors. The weaker LWP reduction implied by these “natural experiments” means that this work provides an upper bound to the radiative forcing from aerosol-induced changes in the LWP.
The acidity of atmospheric particles and clouds
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
LAND—ATMOSPHERE INTERACTIONS
Land–atmosphere (L-A) interactions are a main driver of Earth’s surface water and energy budgets; as such, they modulate near-surface climate, including clouds and precipitation, and can influence the persistence of extremes such as drought. Despite their importance, the representation of L-A interactions in weather and climate models remains poorly constrained, as they involve a complex set of processes that are difficult to observe in nature. In addition, a complete understanding of L-A processes requires interdisciplinary expertise and approaches that transcend traditional research paradigms and communities. To address these issues, the international Global Energy and Water Exchanges project (GEWEX) Global Land–Atmosphere System Study (GLASS) panel has supported “L-A coupling” as one of its core themes for well over a decade. Under this initiative, several successful land surface and global climate modeling projects have identified hot spots of L-A coupling and helped quantify the role of land surface states in weather and climate predictability. GLASS formed the Local Land–Atmosphere Coupling (LoCo) project and working group to examine L-A interactions at the process level, focusing on understanding and quantifying these processes in nature and evaluating them in models. LoCo has produced an array of L-A coupling metrics for different applications and scales and has motivated a growing number of young scientists from around the world. This article provides an overview of the LoCo effort, including metric and model applications, along with scientific and programmatic developments and challenges.
AEROSOL–CLOUD–METEOROLOGY INTERACTION AIRBORNE FIELD INVESTIGATIONS
We report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-air-craft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.
Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation
Changes in land cover and aerosols resulting from urbanization may impact convective clouds and precipitation. Here we investigate how Houston urbanization can modify sea-breeze-induced convective cloud and precipitation through the urban land effect and anthropogenic aerosol effect. The simulations are carried out with the Chemistry version of the Weather Research and Forecasting model (WRF-Chem), which is coupled with spectral-bin microphysics (SBM) and the multilayer urban model with a building energy model (BEM-BEP). We find that Houston urbanization (the joint effect of both urban land and anthropogenic aerosols) notably enhances storm intensity (by ∼ 75 % in maximum vertical velocity) and precipitation intensity (up to 45 %), with the anthropogenic aerosol effect more significant than the urban land effect. Urban land effect modifies convective evolution: speed up the transition from the warm cloud to mixed-phase cloud, thus initiating surface rain earlier but slowing down the convective cell dissipation, all of which result from urban heating-induced stronger sea-breeze circulation. The anthropogenic aerosol effect becomes evident after the cloud evolves into the mixed-phase cloud, accelerating the development of storm from the mixed-phase cloud to deep cloud by ∼ 40 min. Through aerosol–cloud interaction (ACI), aerosols boost convective intensity and precipitation mainly by activating numerous ultrafine particles at the mixed-phase and deep cloud stages. This work shows the importance of considering both the urban land and anthropogenic aerosol effects for understanding urbanization effects on convective clouds and precipitation.