Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
221 result(s) for "Clove Oil - chemistry"
Sort by:
Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10–40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.
Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities
Herbal medicinal products have been documented as a significant source for discovering new pharmaceutical molecules that have been used to treat serious diseases. Many plant species have been reported to have pharmacological activities attributable to their phytoconstituents such are glycosides, saponins, flavonoids, steroids, tannins, alkaloids, terpenes, etc. Syzygium aromaticum (clove) is a traditional spice that has been used for food preservation and possesses various pharmacological activities. S. aromaticum is rich in many phytochemicals as follows: sesquiterpenes, monoterpenes, hydrocarbon, and phenolic compounds. Eugenyl acetate, eugenol, and β-caryophyllene are the most significant phytochemicals in clove oil. Pharmacologically, S. aromaticum has been examined toward various pathogenic parasites and microorganisms, including pathogenic bacteria, Plasmodium, Babesia, Theileria parasites, Herpes simplex, and hepatitis C viruses. Several reports documented the analgesic, antioxidant, anticancer, antiseptic, anti-depressant, antispasmodic, anti-inflammatory, antiviral, antifungal, and antibacterial activity of eugenol against several pathogenic bacteria including methicillin-resistant Staphylococcus epidermidis and S. aureus. Moreover, eugenol was found to protect against CCl4−induced hepatotoxicity and showed a potential lethal efficacy against the multiplication of various parasites including Giardia lamblia, Fasciola gigantica, Haemonchus contortus, and Schistosoma mansoni. This review examines the phytochemical composition and biological activities of clove extracts along with clove essential oil and the main active compound, eugenol, and implicates new findings from gas chromatography-mass spectroscopy (GC-MS) analysis.
Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus
The essential oil of clove has a wide range of pharmacological and biological activities and is widely used in the medicine, fragrance and flavoring industries. In this work, 22 components of the essential oil obtained from clove buds were identified. Eugenol was the major component (76.23%). The essential oil exhibited strong antibacterial activity against Staphylococcus aureus ATCC 25923 with a minimum inhibitory concentration (MIC) of 0.625 mg/mL, and the antibacterial effects depended on its concentration and action time. Kill-time assays also confirmed the essential oil had a significant effect on the growth rate of surviving S. aureus. We hypothesized that the essential oil may interact with the cell wall and membrane first. On the one hand it destroys cell wall and membranes, next causing the losses of vital intracellular materials, which finally result in the bacterial death. Besides, essential oil penetrates to the cytoplasmic membrane or enters inside the cell after destruction of cell structure, and then inhibits the normal synthesis of DNA and proteins that are required for bacterial growth. These results suggested that the effects of the clove essential oil on the growth inhibition of S. aureus may be at the molecular level rather than only physical damage.
Anticancer Properties of Eugenol: A Review
Conventional cancer treatments have shown several unfavourable adverse effects, as well as an increase in anticancer drug resistance, which worsens the impending cancer therapy. Thus, the emphasis is currently en route for natural products. There is currently great interest in the natural bioactive components from medicinal plants possessing anticancer characteristics. For example, clove (Syzygium aromaticum L.) (Family Myrtaceae) is a highly prized spice that has been historically utilized as a food preservative and for diverse medical uses. It is reckoned amongst the valued sources of phenolics. It is indigenous to Indonesia but currently is cultivated in various places of the world. Among diverse active components, eugenol, the principal active component of S. aromaticum, has optimistic properties comprising antioxidant, anti-inflammatory, and anticancer actions. Eugenol (4-allyl-2-methoxyphenol) is a musky oil that is mainly obtained from clove. It has long been utilized all over the world as a result of its broad properties like antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Eugenol continues to pique investigators’ interest because of its multidirectional activities, which suggests it could be used in medications to treat different ailments. Anticancer effects of eugenol are accomplished by various mechanisms like inducing cell death, cell cycle arrest, inhibition of migration, metastasis, and angiogenesis on several cancer cell lines. Besides, eugenol might be utilized as an adjunct remedy for patients who are treated with conventional chemotherapy. This combination leads to a boosted effectiveness with decreased toxicity. The present review focuses on the anticancer properties of eugenol to treat several cancer types and their possible mechanisms.
In Vitro Antiviral Potential, Antioxidant, and Chemical Composition of Clove (Syzygium aromaticum) Essential Oil
Viral infections are spread all around the world. Although there are available therapies, their safety and effectiveness are constrained by their adverse effects and drug resistance. Therefore, new natural antivirals have been used such as essential oils, which are natural products with promising biological activity. Accordingly, the present study aimed to identify the components of clove (Syzygium aromaticum) essential oil (EOCa) and verify its antioxidant and antiviral activity. The oil was analyzed using GC/MS, and the antioxidant capacity was evaluated as a function of the radical scavenging activity. A plaque reduction test was used to measure the antiviral activity against herpes simplex virus (HSV-1), hepatitis A virus (HAV), and an adenovirus. GC/MS analysis confirmed the presence of eugenol as the main component (76.78%). Moreover, EOCa had powerful antioxidant activity with an IC50 of 50 µg/mL. The highest antiviral potential was found against HAV, with a selectivity index (SI) of 14.46, while showing poor selectivity toward HSV-1 with an SI value of 1.44. However, no relevant effect was detected against the adenovirus. The antiviral activity against HAV revealed that its effect was not related to host cytotoxicity. The findings imply that EOCa can be utilized to treat diseases caused by infections and free radicals.
Synergistic antibacterial, antifungal and antioxidant efficacy of cinnamon and clove essential oils in combination
The present investigation aimed to evaluate antibacterial, antifungal and antioxidant efficacy of essential oils of three commonly used spices (black pepper, cinnamon and clove) in combination along with chemical characterization and toxicity evaluation. Among the possible combinations tested, cinnamon/clove oil combination showed synergistic antibacterial activity against foodborne bacteria Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium and Pseudomonas aeruginosa and synergistic antifungal activity against Aspergillus niger as well as synergistic antioxidant potential in DPPH radical scavenging model system. GC–HRMS analysis revealed that out of thirteen identified components from clove oil, eugenol was found to be the main constituent of the oil; whereas out of twenty one identified constituents from cinnamon oil, the main component was cinnamaldehyde. Cinnamon/clove oil combination did not show any cytotoxic potential at recommended dosage level (IC50 > 2000 µg/ml). The results provide evidence that cinnamon/clove oil combination might indeed be used as a potential source of safe and effective novel natural antibacterial, antifungal and antioxidant blend in the food and pharmaceutical industries. To the best of our knowledge, this is the first time a combination of essential oils has been tested as natural preservatives to prevent both microbial proliferation and oxidative deterioration at sufficiently low concentrations.
Investigating Antiarthritic Potential of Nanostructured Clove Oil (Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies
The combined application of clove oil in a lipid nanocarrier opens a promising avenue for bone and joints therapy. In this study, we successfully developed a tunable controlled-release lipid platform for the efficient delivery of clove oil (CO) for the treatment of rheumatoid arthritis (RA). The ultra-small nanostructured lipid carriers co-loaded with CO (CONCs) were developed through an aqueous titration method followed by microfluidization. The CONCs appeared to be spherical (particle size of 120 nm), stable (zeta potential of −27 mV), and entrapped efficiently (84.5%). In toluene:acetone:glacial acetic acid (90:9:1 percent v/v/v) solvent systems, high-performance thin layer chromatography (HPTLC) analysis revealed the primary components in CO as eugenol (RF = 0.58). The CONCs greatly increased the therapeutic impact of CO in both in vitro and in vivo biological tests, which was further supported by excellent antiarthritic action. The CONC had an antiarthritic activity that was slightly higher than neat CO and slightly lower than standard, according to our data. The improved formulation inhibited serum lysosomal enzymes and proinflammatory cytokines while also improving hind leg function. This study provides a proof of concept to treat RA with a new strategy utilizing essential oils via nanodelivery.
Antimicrobial and Antiviral Activities of Durable Cotton Fabrics Treated with Nanocomposite Based on Zinc Oxide Nanoparticles, Acyclovir, Nanochitosan, and Clove Oil
In this study, cotton fabrics based on zinc oxide nanoparticles in situ synthesis, acyclovir, nanochitosan, and clove oil were treated. The treated cotton fabrics were examined by FTIR, HR-TEM, FE-SEM, EDAX, and the surface roughness processing of FE-SEM images. The obtained characterization data emphasized the nano-size of nanocomposite with high homogeneity of particles in spherical shape as well as affirmed the deposition of nanocomposite onto the textile fibers with concluded that the deposition of nanocomposite was increased parallel with sonication time. Antimicrobial and antiviral activities of treated cotton fabrics were evaluated. Results revealed that treated cotton fabrics exhibited promising antibacterial activity toward Gram-positive higher than Gram-negative bacteria. Likewise, treated cotton fabrics are still effective as antibacterial after washing for 100 cycles. Moreover, treated cotton fabrics exhibited potential antifungal activity against Candida albicans, Aspergillus niger, and Aspergillus fumigatus. The antiviral activity significantly depended on the type of virus. The treated cotton fabrics showed antiviral activity against tested viral particles (HSV-1, Adeno, and CoxB2) with viral inhibition of 95.9, 76.4, and 86.9% respectively, while in the case of coated cotton textile with acyclovir, it only exhibited viral inhibition of 49.9, 41, and 22.3% respectively.
Formulation and Evaluation of a Clove Oil-Encapsulated Nanofiber Formulation for Effective Wound-Healing
Wound-healing is complicated process that is affected by many factors, especially bacterial infiltration at the site and not only the need for the regeneration of damaged tissues but also the requirement for antibacterial, anti-inflammatory, and analgesic activity at the injured site. The objective of the present study was to develop and evaluate the natural essential oil-containing nanofiber (NF) mat with enhanced antibacterial activity, regenerative, non-cytotoxic, and wound-healing potential. Clove essential oil (CEO) encapsulated in chitosan and poly-ethylene oxide (PEO) polymers to form NFs and their morphology was analyzed using scanning electron microscopy (SEM) that confirmed the finest NFs prepared with a diameter of 154 ± 35 nm. The successful incorporation of CEO was characterized by Fourier transform infra-red spectroscopy (FTIR) and X-ray diffractometry (XRD). The 87.6 ± 13.1% encapsulation efficiency and 8.9 ± 0.98% loading of CEO was observed. A total of 79% release of CEO was observed in acidic pH 5.5 with 117% high degree of swelling. The prepared NF mat showed good antibacterial activity against Staphylococcus aureus and Escherichia coli and non-cytotoxic behavior against human fibroblast cell lines and showed good wound-healing potential.
Towards a Bioactive Food Packaging: Poly(Lactic Acid) Surface Functionalized by Chitosan Coating Embedding Clove and Argan Oils
Here we introduce a new method aiming the immobilization of bioactive principles onto polymeric substrates, combining a surface activation and emulsion entrapment approach. Natural products with antimicrobial/antioxidant properties (essential oil from Syzygium aromaticum—clove and vegetal oil from Argania spinosa L—argan) were stabilized in emulsions with chitosan, a natural biodegradable polymer that has antimicrobial activity. The emulsions were laid on poly(lactic acid) (PLA), a synthetic biodegradable plastic from renewable resources, which was previously activated by plasma treatment. Bioactive materials were obtained, with low permeability for oxygen, high radical scavenging activity and strong inhibition of growth for Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli bacteria. Clove oil was better dispersed in a more stable emulsion (no separation after six months) compared with argan oil. This leads to a compact and finely structured coating, with better overall properties. While both clove and argan oils are highly hydrophobic, the coatings showed increased hydrophilicity, especially for argan, due to preferential interactions with different functional groups in chitosan. The PLA films coated with oil-loaded chitosan showed promising results in retarding the food spoilage of meat, and especially cheese. Argan, and in particular, clove oil offered good UV protection, suitable for sterilization purposes. Therefore, using the emulsion stabilization of bioactive principles and immobilization onto plasma activated polymeric surfaces we obtained a bioactive material that combines the physical properties and the biodegradability of PLA with the antibacterial activity of chitosan and the antioxidant function of vegetal oils. This prevents microbial growth and food oxidation and could open new perspectives in the field of food packaging materials.